Institute of Liver & Biliary Sciences

Dedicated to Excellence in Patient Care,
Teaching & Research in Liver & Biliary Diseases

A Deemed Liver University

New Delhi, India www.ilbs.in

Viral Hepatitis in Pregnancy – "Unravelling the Mystery"

HEV in Pregnancy Management of fulminant
hepatic failure - Medical
Management in ICU".

Rakhi Maiwall

Additional Professor

Department of Hepatology

rakhi_2011@yahoo.co.in

- Burden and outcomes of HEV ALF in pregnancy
- Pathogenetic mechanism
- D/D from diseases specific to pregnancy
- Medical Management

Routine

Specific to pregnant state

Specific to HEV infection

- Burden and outcomes of HEV ALF in pregnancy
- Pathogenetic mechanism
- D/D from diseases specific to pregnancy
- Medical Management

Routine

Specific to pregnant state

Specific to HEV infection

Burden of Disease

- HEV has the highest rate of mortality caused by liver failure than other viral hepatitic agent
- Globally-2400 to 3000/year stillbirths

Country, year	No. of cases (N)	Number of females overall (%)	Pregnancy	Percentage of female patients with pregnancy associated liver failure	Etiology of ALF (HEV)	Overall mortality reported (pregnant females)
USA, ²⁰ 2012	1696	1173 (69%)	16	1.5%	Nil	NR
UK, ²¹ 2009	422	257 (61%)	? NR	NR	Nil	NR
Germany, ²² 2012	109	69 (63%)	3	NR	Nil	33%
Australia, ²³ 2004	80	64 (80%)	? NR	NR	Nil	NR
India, ²⁴ 2008	1015	590 (58%)	249	38.5%	59.4%	54%
India, ²⁵ 2003	180	111 (62%)	49/83	59%	96%	66%
France, ²⁶ 2008	363	-	? NR	2%	Nil	NR
Japan, ²⁷ 2011	856	423 (49%)	? NR	NR	Nil	NR

Impact of HEV on Maternal and Fetal Outcomes

Maternal mortality in 15% to 25% of cases

- Coagulopathy, DIC, encephalopathy and cerebral edema of ALF -70% of HEV infected pregnant women
- Hepatic coma-poor prognosis mortality ~ 100%

Fetal mortality -third trimester.

- Preterm delivery- poor infant survival rates
- Miscarriage, stillbirth, or neonatal death in 56% of infants.
- Infant deaths within a week-15% to 50%

Kar. P. Exp Rev Gastro Hepatol. 2019 Mar;13(3):205-211

Maternal and Fetal Outcomes in Pregnant Women with Acute Hepatitis E Virus Infection

Sharda Patra, MS; Ashish Kumar, MD, DM; Shubha Sagar Trivedi, MS; Manju Puri, MS; and Shiv Kumar Sarin, MD, DM

Variable	HEV-Infected Women $(n = 132), n/n$ (%)	Non-HEV-Infected Women $(n = 88), n/n (\%)$	Relative Risk (95% CI)	P Value
Maternal mortality rate				
Overall	54/132 (41)	6/88 (7)	6.0 (2.7-13.3)	< 0.001
Patients with fulminant hepatic failure	54/73 (74)	6/18 (33)	2.2 (1.1-4.3)	0.001
Second trimester	18/27 (66)	0/7 (0)	-	0.002
Third trimester	36/46 (78)	6/11 (54)	1.4 (0.8–2.5)	0.11
Patients without fulminant hepatic failure	0/59 (0)	0/70 (0)	-	1.00
Medical complications				
Coagulation defect†	104/132 (79)	32/88 (36)	2.2 (1.6–2.9)	< 0.001
Nasal or gastrointestinal hemorrhage	25/132 (19)	4/88 (4)	4.2 (1.5–11.6)	0.002
Leukocyte count ≥11 × 10 ⁹ cells/L	86/132 (65)	31/88 (35)	1.8 (1.4–2.5)	< 0.001
Serum creatinine concentration \geq 34 μ mol/L (\geq 2 mg/dL)	39/132 (30)	4/88 (4)	6.5 (2.4–17.5)	< 0.001
Ascites	33/132 (25)	5/88 (6)	4.4 (1.8–10.8)	< 0.001
Clinical signs of increased intracranial tension	27/132 (20)	1/88 (1)	18.0 (2.5–130.1)	< 0.001

Key findings:

- HEV infection-AVH in 60%
- Fulminant hepatic failure was more common (RR, 2.7 [95% CI, 1.7 to 4.2)
- Maternal mortality was greater (RR, 6.0 [CI, 2.7 to 13.3]
- More frequent obstetric complications, antepartum hemorrhage, IUD
- Poor fetal outcomes

Ann Intern Med. 2007;147:28-33

- Burden and outcomes of HEV ALF in pregnancy
- Pathogenetic mechanism
- D/D from diseases specific to pregnancy
- Medical Management

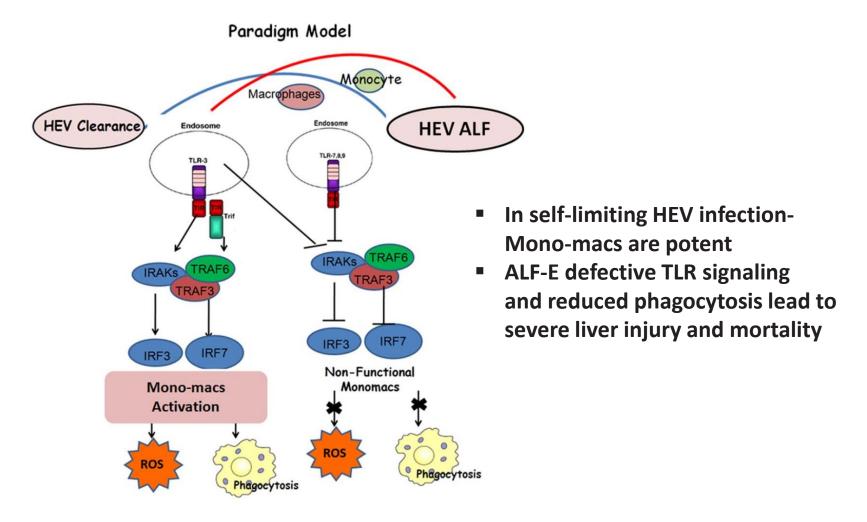
Routine

Specific to pregnant state

Specific to HEV infection

Pathogenetic Mechanism

Immunological changes- accommodate fetus


• Decrease in cell-mediated immunity

Shift in Th1/Th2 balance Decrease in the CD4/CD8 Ratio Cytokines Inc. TGF-\(\beta\), IL-4 and IL-10

- Hormonal Changes: Increase in estrogen, progesterone and CMI Lymphocyte apoptosis-NF-KB pathway(Absent p65 component)
- Oxidative stress (reduced glutathione)
- Micronutrient and folate deficiency
- Coagulopathy- Inc. PPH

Navaneethan et.al.Liver Int. 2008 November; 28(9): 1190-1199

Impaired Monocyte-Macrophage Functions and Defective Toll-Like Receptor Signaling in Hepatitis E Virus-Infected Pregnant Women With Acute Liver Failure

- Burden and outcomes of HEV ALF in pregnancy
- Pathogenetic mechanism
- D/D from diseases specific to pregnancy
- Medical Management

Routine

Specific to pregnant state

Specific to HEV infection

Diseases classification

- Pregnancy related liver disease
 - First trimester
 - Hyperemesis gravidarum
 - Second and third trimesters
 - Intrahepatic cholestasis of pregnancy
 - Hypertension related liver diseases
 - Preeclampsia, eclampsia, and the HELLP syndrome
 - (hemolysis, elevated liver enzymes, low platelet counts)
 - Liver infarction/liver rupture
 - Acute fatty liver of pregnancy
- Non-pregnancy related Pre existing liver disease
 - Portal hypertension, cirrhosis, primary biliary cirrhosis
 - Autoimmune hepatitis
 - Wilson disease
 - Chronic infection with hepatitis B or hepatitis C virus and other viruses
 - · Alcoholic liver disease
 - Pregnancy post LT

- Coincidentally with pregnancy
 - Autoimmune
 - Viral -Acute viral hepatitis and other viral infections
 - Alcohol-related diseases
 - Gallstone disease
 - Budd-Chiari syndrome

Differential Diagnosis of ALF in Pregnancy

	HELLP	AFLP	Viral Hepatitis
Risk factors	Prior pregnancy with HELLP Multiple gestation Extremes of age	Primigravida Multiple gestation Male fetus	Same as nonpregnant (blood, fecal/oral transmission depending on type)
Typical gestational age of onset	>20 wk	>24 wk	Any, evenly distributed through trimesters
Prior/family history	?		
Typical clinical features	Hemolysis Thrombocytopenia Elevated liver function tests With/without hypertension	Liver failure Coagulopathy Encephalopathy Hyperammonemia Hypoglycemia	Liver failure Coagulopathy Encephalopathy DIC
	With/without proteinuria DIC and liver failure (rare)	DIC Jaundice	_ _
Diagnosis			
AST/ALT levels	Mild, up to $20\times$ normal	300–500 IU/L but may vary	>1000 IU/L
Bilirubin	<5 mg/dL	<5 mg/dL but may be higher	Variable
Imaging	Normal in most, infarcts, hematomas, capsular rupture (rare)	Fatty infiltration	Normal
Outcomes			
Maternal mortality	1%	7%–18%	41%-54% (hepatitis E)
Fetal/perinatal mortality	11% (gestational age dependent)	9%-23% (gestational age dependent)	69% (hepatitis E) 39% (HSV)
Recurrence	25%, aspirin therapy starting at 16 wk may decrease risk	High if LCHAD deficiency, otherwise rare	None

Diagnostic Evaluation

Hematology Complete blood count Type and screen PT aPTT INR Lactate Serum Chemistry Electrolytes Liver function tests (ALT, AST, GGT, bilirubin, albumin) Amylase Lipase Arterial Blood Gas Lactate Ammonia Toxicology Screen Acetaminophen Cocaine Alcohol Autoimmune ANA Anti-smooth muscle antibody Microsomal antibodies Hepatitis Serology Anti-HAV IgM HBsAg Anti-HBc IgM Antihepatitis E Additional Viral Serology CMV EBV HSV HIV Other Ceruloplasmin

Serum copper

Pregnancy-associated acute liver disease and acute viral hepatitis: Differentiation, course and outcome *

Harshad Devarbhavi^{1,2,*}, Walter K Kremers³, Ross Dierkhising³, Lakshmi Padmanabhan⁴

Variable	PAALD $(N = 46)$	VH (N = 41)	Odds ratio (95% CI) ^b	<i>p</i> -Value ^b
Features				
Age (years)	23.9 ± 4.6	24.5 ± 4.9	1.03 (0.94, 1.13)	0.57
Primigravida	22 (47.8%)	18 (43.9%)	0.85 (0.36, 1.99)	0.71
Gestation weeks	32.3 ± 6.5	31.2 ± 6.3	0.97 (0.91, 1.04)	0.42
Hypertension	30 (65.2%)	1 (2.4%)	0.01 (<0.001, 0.07)	<.0001
Encephalopathy	19 (42.2%) ^a	4 (9.8%)	0.15 (0.04, 0.45)	0.0004
Abdominal pain	13 (28.3%)	8 (19.5%)	0.62 (0.22, 1.66)	0.34
Oliguria	15 (34.1%) ^a	0 (0.0%)	< 0.001 (0.0, 0.10)	< 0.0001
Ascites	35 (76.1%)	3 (7.3%)	0.03 (0.01, 0.09)	< 0.0001
Outcomes				
Death	19 (41.3%)	3 (7.5%)	$0.12 (0.03, 0.38)^*$	0.0002^{*}
Fetal death	24 (53.3%)	4 (9.8%)	$0.10 (0.03, 0.28)^*$	< 0.0001

Multivariate logistic regression model for differentiating VH vs. PAALD

Variable	Odds ratio (95% CI)	<i>p</i> -Value	
Hypertension	0.009 (<0.001, 0.069)	0.0001	
Ascites	0.018 (0.003, 0.085)	< 0.0001	

H. Devarbhavi et al. / Journal of Hepatology 49 (2008) 930-935

Biochemical Factors

Variable	PAALD $(N = 46)$	VH (N = 41)	Odds ratio (95% CI) ^a	<i>p</i> -Value ^a
Hemoglobin (g/dl)	10.30 ± 3.5	10.29 ± 2.3	1.00 (0.86, 1.15)	0.99
WRC $(10^9/L)$	26 + 35.2	15.7 ± 13.8	0.98 (0.93, 1.00)	0.05
LDH (U/L)	1084.7 ± 1168	415.4 ± 255.8	0.997 (0.994, 0.999)	0.0003
Serum creatinine (mg/dl)	2.43 ± 1.5	1.17 ± 1.25	0.39 (0.22, 0.63)	< 0.0001
Blood urea nitrogen (mg/dl)	52 ± 30	25 ± 34	0.96 (0.94, 0.98)	0.0001
Uric acid (mg/dl)	8.39 ± 2.9	5.82 ± 3.5	0.76 (0.60, 0.92)	0.0037
Glucose mg/dl	70.8 ± 43.7	83.0 ± 57.9	1.005 (0.996, 1.016)	0.29
FDP	941.8 ± 232.6	806.7 ± 400.5	0.999 (0.996, 1.001)	0.16
Prothrombin time (s)	33.0 ± 22.5	21.0 ± 7.1	0.93 (0.88, 0.97)	0.0003
aPTT (s)	55.2 ± 25.9	45.2 ± 27.1	0.982 (0.955, 1.003)	0.11
Platelets (10 ⁹ /L)	79218 ± 58603	205189 ± 88621	1.024 (1.015, 1.036)*	< 0.0001
Total proteins (mg.dl)	5.26 ± 0.98	6.07 ± 0.78	2.85 (1.67, 5.34)	< 0.0001
Albumin (mg/dl)	2.34 ± 0.49	2.96 ± 0.56	14.81 (4.64, 63.29)	< 0.0001
Total bilirubin (mg/dl)	9.88 ± 6.9	11.18 ± 5.5	1.03 (0.97, 1.11)	0.33
Direct bilirubin (mg/dl)	6.78 ± 4.9	6.62 ± 2.8	0.99 (0.89, 1.10)	0.85
AST (U/L)	268 ± 295	828 ± 1045	1.001 (1.001, 1.003)	0.0003
ALT (U/L)	186 ± 138	576 ± 729	1.003 (1.001, 1.006)	< 0.0001

Multivariate logistic regression models for clinical and laboratory variables predicting mortality

Model variable types considered	Variable	Odds ratio (95% CI)	<i>p</i> -Value	\overline{C}
Clinical variables only or clinical variables/easy labs	Abdominal pain	5.68 (1.52, 24.31)	0.0125	0.85
	Oliguria	7.47 (1.77, 36.72)	0.0086	
	Ascites	5.17 (1.36, 23.33)	0.0206	
Clinical and all laboratories	Total bilirubin	1.17 (1.06, 1.32)	0.0053	0.83
	Oliguria	14.09 (3.58, 67.60)	0.0003	

H. Devarbhavi et al. / Journal of Hepatology 49 (2008) 930-935

- Burden and outcomes of HEV ALF in pregnancy
- Pathogenetic mechanism
- D/D from diseases specific to pregnancy
- Medical Management

Specific to HEV infection

Specific to pregnant state

Routine

Does Hepatitis E Viral Load and Genotypes Influence the Final Outcome of Acute Liver Failure During Pregnancy?

Group	Viral Load IU/mL	Genotype
AVH PREG $(N = 7)$	343.29 ± 216.44	1
AVH NON-PREG $(N = 6)$	$13.83 \pm 7.8^*$	1
FHF PREG $(N = 14)$	$5.87 \times 10^4 \pm 1.5 \times 10^5$	1
FHF NON-PREG ($N = 3$)	$199.2 \pm 225.5^*$	1

Therapy specific to HEV infection

Ribavirin- Teratogenic

Safety in pregnancy not established

Sofosbuvir- Additive effect with ribavirin- replicon

Genotype 3 chronic infection

Category B drug pregnancy

Need of controlled trials

Kar. P. Exp Rev Gastro Hepatol. 2019 Mar;13(3):205-211

Management related to Pregnant State

- Management of abortions, preterm labor, and still birth are same as for a normal pregnancy.
- Increased risk of bleeding-Coagulopathy
- No role of termination of pregnancy
- Vaginal delivery is preferable
- Induction of delivery not recommended
 Coagulopathy, hemodynamic instability increase in the intracranial pressure
- Continuous fetal monitoring
- Successful reports of Liver transplantation with viable fetus

- Burden and outcomes of HEV ALF in pregnancy
- Pathogenetic mechanism
- D/D from diseases specific to pregnancy
- Medical Management

Specific to HEV infection

Specific to pregnant state

Routine

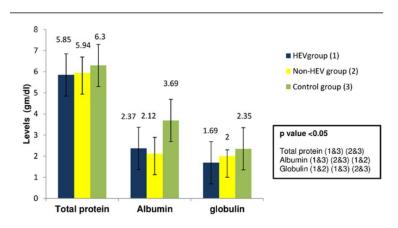
Principles of Medical Managment

- Multimodality team approach-critical care specialists, obstetrician, hepatologists gastroenterologists, neonatologists, and transplant surgeons.
- Few evidence-based recommendations for managing the pregnant woman with ALF.
- Management of ALF should be guided by the same principles followed for the nonpregnant patient

Management				
Early Identification of red flag signs/ symptoms				
Referral to a Tertiary Care Hospital –Ensure Minimum Risk of Transportation				
Admission to ICU- Grade 3 or 4 hepatic encephaloapthy				
Nutrition				
General care				
Fluid and Electrolyte management				
Managing Hepatic Encephalopathy and Ammonia and Seizure				
Management of Cerebral edema & raised intracranial pressure				
Correction of coagulopathy- delivery				
Prevention and Treatment of renal failure				
Prevention and Treatment of Infection				
Respiratory Failure and ventilator management				
Hemodynamics and Cardiovascular monitoring				
Liver Transplantation				

Management	
Early Identification of red flag signs/ symptoms	Any degree of altered sensorium in a patient of acute liver injury should not be ignored.
Referral to a Tertiary Care Hospital and Risk of Transportation	Managing a ALF patient in resource poor setting should be avoided. Early referral is needed. Patient with HE preferred to be transported to shorter distance, air ambulance and with mechanical ventilation.
Admission to ICU	All patients of ALF should be preferably be admitted to ICU
	Indications- Advanced Hepatic Encephalopathy
	Hemodynamic Instability
	Metabolic Acidosis
Early identification	Prognostic model
for LT	KCH } *None validated for pregnancy
	Dynamic Models
	Pregnancy related ALF-Expedited delivery

IV	ıanaş	geme	nt of H	emoaynamic	S		
1.	Avoid	light,	crowded	places, frequent	position	change,	bowel


General care

	enema for purging.
	2. Prefer Minimal endotracheal suctioning,
Fluid & Electrolyte management	 3. Avoid hypothermia or fever, prolonged hypoxia or hypercarbia. Invariably intravascular volume depletion, due to 'insensible' fluid losses, vomiting and poor oral intake.
	■ Early and adequate fluid resuscitation is therefore mandatory
	Normal saline or balanced fluid i.e. plasmalyte to be preferred. Avoid Hartman solution or ringer lactate
	2. Watch for hyperchloremic metabolic acidosis
	3. Hyponatremia or hypernatremia to be avoided with a target of 145-155meq/l
Hemodynamics and Cardiovascular	Invasive monitoring with CVP line, PiCCO or real time monitor (FlowTrac with facility for extra vascular lung water is preferred
monitoring	2. Pulmonary catheter to be avoided.
	3. Hypotension to be avoided- Norepinephrine first line ,Terli (controversial)
	Auzinger G.and Wendon J.Current Opinion in Critical Care 2008, 14:179–18

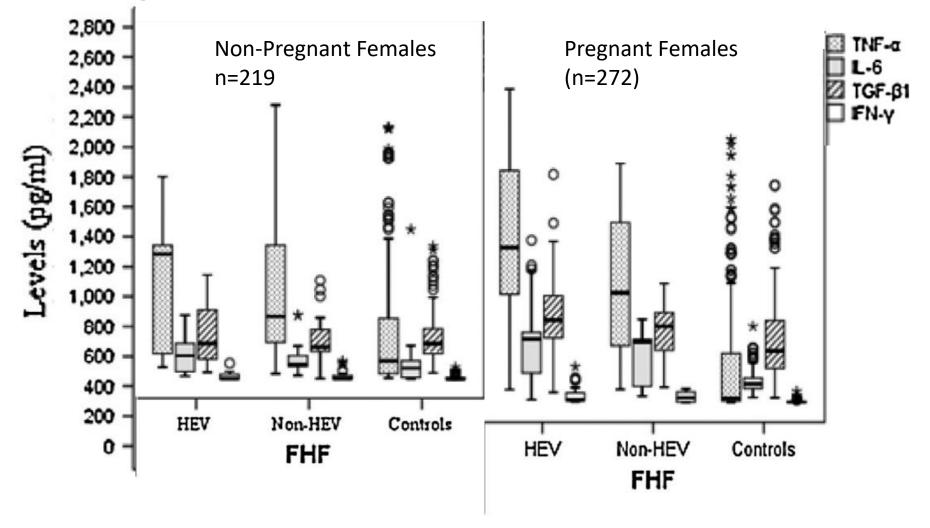
Nutritional Management					
Nutrition		No restrictions of enteral feeding and should be started within 24			
		hours.			
	2.	Calories- 25-30Kcal/kg/day			
	3.	Consideration of parenteral nutrition in absence of enteral nutrition			
		is of no major concern			
	4.	No protein restriction needed			
	5.	Immune nutrition with arginine or glutamine avoided due to fear of			
		ammonia production.			
	6.	Hypoglycemia to be prevented, RBS should be maintained around			
		90-120mg/dl. Avoid 5D & consider 20-25% dextrose infusion at low			
		dose to avoid cerebral edema.			
	7.	Monitor and correct hypophosphatemia			

Impact of maternal malnutrition

Characteristics	Pregnant women			p value		
	HEV group $(N = 103)$	Non-HEV group (N = 110)	Control group ($N = 144$)			
	(1)	(2)	(3)	1 vs. 2	1 vs. 3	2 vs. 3
BMI (kg/m ²)	16.35 ± 1.30	16.60 ± 1.83	19.77 ± 3.56	0.14	< 0.00001	<0.00001
MUAC (m)	0.22 ± 0.02	0.23 ± 0.02	0.25 ± 0.01	0.34	< 0.00001	< 0.00001
TSFT (mm)	12.67 ± 9.95	11.84 ± 1.52	11.91 ± 0.54	0.84	0.006	0.001
ASN (m)	1.53 ± 0.02	1.53 ± 0.02	1.53 ± 0.01	0.38	0.44	0.085
Serum prealbumin (mg/dl) $n = 70^{a}$	28.25 ± 1.35	28.41 ± 1.21	34.18 ± 1.55	< 0.00001	< 0.00001	< 0.00001
Serum folate (ng/ml) $n = 70^{a}$	6.14 ± 0.54	7.36 ± 0.71	4.95 ± 0.45	< 0.00001	< 0.00001	< 0.00001

Arch Gynecol Obstet DOI 10.1007/s00404-017-4501-y

Management of Brain						
Hepatic Encephalopathy and Ammonia and Seizure	 Don't delay in mechanical ventilation with worsening sensorium or Grade III-IV HE. Sedate –Decrease the CMR and metabolic deman Routine prophylaxis for seizure is not needed. Higher-level ammonia >122meq/l to be avoided . 					
	5. Role of LOLA is not established					
Cerebral edema & raised intracranial pressure	 Invasive monitoring for ICP discouraged Non-invasive monitoring-ONSD, TCD Mannitol to be avoided with serum osmolarity >320 mOsm/L 					
	or onset of AKI					
	4. Hypertonic saline or mannitol to be used as bolus not maintenance infusion					
	5. Artificial Liver Support Therapies(CRRT, HVP, MARS)- More data is needed					
	Case to case basis					


Management				
Correction of	Routine prophylactic correction of coagulopathy with FFP,			
coagulopathy	Cryoprecipitate or platelet is discouraged in absence of any active bleeding or high-risk intervention.			
Prevention and Treatment of renal	1. Avoid nephrotoxic drugs, dehydration.			
failure	2. Early RRT is preferred over late			
	3. Avoid SLED or HD in patents of ALF. Consider CCRT.			
Prevention and Treatment of Infection	1. Prophylaxis with antibiotics and antifungals for high-risk cases with severe liver dysfunction, mechanical ventilation or multiorgan failure.			
	 Universal precaution i.e. topical bacterial decontamination, with oral chlorhexidine and chlorhexidine bathing (soaked wipes) needed 			
Respiratory Failure and ventilator	1. Early endotracheal intubation, rapid sequence induction, low tidal volume, low PEEP preferred			
management	2. Sustained hyperventilation and permissive hypercapnia is contraindicated in ALF.			

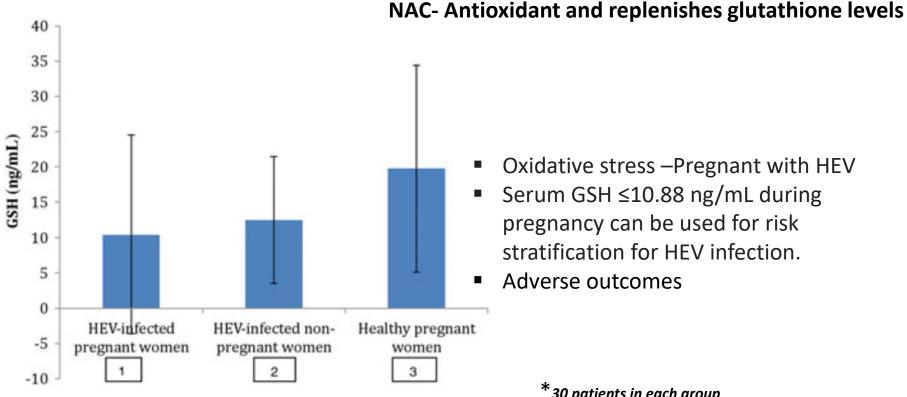
Relevance of systemic inflmmatory response syndrome!

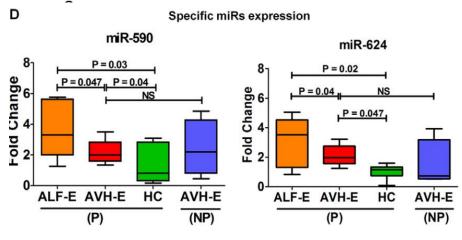
Association of cytokines in hepatitis E with pregnancy outcome

Ashok Kumar ^{a,*}, Salam Gyaneshwori Devi ^a, Premashis Kar ^b, Sarita Agarwal ^c, Syed Akhtar Husain ^d, Ram Kumar Gupta ^a, Shashi Sharma ^e

A Kumar et al. / Cytokine 65 (2014) 95-104

? Role of N-Acetylcysteine





Figure 1 Serum reduced glutathione levels (GSH) in various study groups (p < 0.05) (1 vs 3 & 2 vs 3).

*30 patients in each group

Need of Biomarkers!

miRNA signatures can predict acute liver failure in hepatitis E infected pregnant females

Trehanpati et.al.Heliyon. 2017 Apr 6;3(4):e00287

Summary

- Hepatitis E infection in pregnancy is associated with poor maternal and fetal outcomes
- Fulminant hepatic failure and maternal mortality are more common in third trimester.
- Important to differentiate from Pregnancy asso. Liver disorders
- Treatment-Supportive with diligent monitoring and intensive care.
- Therapeutic termination of pregnancy is not recommended based on current evidence.
- Indications and timing of liver transplantation for ALF is controversial.

Thank you!