### Children with Chronic HBV infection Past, Present and Future

Dr Seema Alam Prof Pediatric Hepatology Department of Pediatric Hepatology Institute of Liver and Biliary Sciences

#### **Universal Immunization Program**

□Hepatitis B vaccine was universalised nationwide in 2011. The UIP schedule recommends hepatitis B birth dose to all infants within 24 hours, followed by three doses at 6, 10 and 14 weeks

□ Hepatitis-B birth dose coverage was □45% in 2015 and 60% in 2016.

□Missed opportunity 40%

□ Coverage amongst institutional deliveries for Hepatitis -B birth dose reported to be 76.36% as of December 2017.

#### India's target for Hepatitis B immunization

| S.No. | Country Targets (to be provided by UIP)                           | Baseline (2016-17) | 2019-20      |
|-------|-------------------------------------------------------------------|--------------------|--------------|
| 1.    | Coverage of Birth Dose of Hepatitis B ( All deliveries)           |                    | 90%          |
| 2.    | Coverage with three doses of Hepatitis B vaccine in infants (B3). |                    | 95%          |
| 3.    | Routine Hepatitis B vaccination among health-care workers.        | N/A                | Will be made |
|       |                                                                   |                    | Available    |

# Chronic HBV infection in children



Majority have

- infancy-acquired infection (Mother to child transmission, Household contacts, Multitransfused, infected syringes)
- normal transaminases
- high HBV DNA
- minimal histological changes
- 'immunotolerance' to HBV



Chronic HBV infection Long term outcome

Before adulthood

- 3-5% develop cirrhosis
- 1-3/10000 have HCC
   Whole lifetime
- Risk of cirrhosis 2-3% / yr

# Natural History in children

• Perinatal + HorizontalTransmision

Risk of Chronicity as per age of acquistion

- 1. Infancy- >90%
- 2. 1-5 Years- 25-50%
- 3. > 5 Years- 5-10 %

Seroconversion Rates Perinatal Transmission- Asians 1. < 3 Yr Age- 2%/Year

2. > 3 Yr Age- 4-5%/Year

Horizontal Transmission- Europeans

70-80% over 20 Years

# Perinatally Acq. HBV: Natural History

- Loss of tolerance at a median age of 30y
- Two-third: Inactive carrier
- One-third: Chronic hepatitis with subsequent risk of cirrhosis, liver failure, HCC
- Risk of HCC: Higher than in horizontally acquired HBV
- Asymptomatic but highly infectious

#### Outcome of HBV infection by age at infection





#### Stages of chronic HBV infection



Adapted from Fattovich G. Sem Liver Dis. 2003;23:47-58

#### Phases of Chronic Hepatitis B in Children

| Phase                         | Labs and Histology                                                    |
|-------------------------------|-----------------------------------------------------------------------|
| Immunotolerant                | > HBsAg & HBeAg +ve                                                   |
|                               | > HBV DNA > 20,000 IU/ ml (> $10^5$ Copies / ml)                      |
|                               | > ALT Normal                                                          |
|                               | <ul> <li>Absent or Minimal Liver Inflammation and Fibrosis</li> </ul> |
| Immunoactive/ Immunoclearance | ➢ HBsAg & HBeAg +ve                                                   |
|                               | > HBV DNA > 20,000 IU/ ml (> $10^5$ Copies / ml)                      |
|                               | > ALT persistently elevated                                           |
|                               | <ul> <li>Liver inflammation and Fibrosis may develop</li> </ul>       |
| Incative Chronic Hepatitis    | $\rightarrow$ HBsAg +ve                                               |
|                               | ➢ HBeAg −ve/ Anti HBe +ve                                             |
|                               | ➢ HBV DNA < 2000 IU/ml (< 10 <sup>4</sup> Copies/ ml) or Undetectable |
|                               | > ALT Normal                                                          |
|                               | <ul> <li>Absent or Minimal Liver Inflammation or Fibrosis</li> </ul>  |
| HBeAg Negative Chronic Active | $\rightarrow$ HBsAg +ve                                               |
|                               | ➢ HBeAg −ve/ Anti HBe +ve                                             |
| Hepatitis (Immune Escape)     | $\rightarrow$ HBV DNA > 2000 IU/ml (> 10 <sup>4</sup> Copies/ml)      |
|                               | > ALT Raised                                                          |
|                               | Active Liver Inflammation $\pm$ Fibrosis                              |

### **Spectrum of Chr. HBV in Children (n=203)**



#### **Immune-clearance**

Am J Gastroenterology 2011; 106: S552-553

# Immune-tolerant phase in young patients: evidence for treating earlier

#### Preserved T-Cell Function in Children and Young Adults With Immune-Tolerant Chronic Hepatitis B

PATRICK T. F. KENNEDY,\* ELENA SANDALOVA,<sup>‡</sup> JUANDY JO,<sup>‡</sup> UPKAR GILL,\* INES USHIRO-LUMB,\* ANTHONY T. TAN,<sup>‡</sup> SANDHIA NAIK,\* GRAHAM R. FOSTER,\* and ANTONIO BERTOLETTI<sup>‡,§,||</sup>

#### GASTROENTEROLOGY 2012;143:637-645

HBV infection in younger patients is not associated with an immune profile of T-cell tolerance. On the contrary, children and young adults with chronic HBV infection have an HBV-specific immune profile that is less compromised than that observed in older patients.

### Do we need to treat these patients?

#### Pros

- Asians with Perinatal Transmission- Long I-T Phase- Higher risk of Cx
- High Viral Load- Decrease makes sense to prevent risk of HCC and Cirrhosis
- Prevent the spread of infection
- Psychological trauma/social stigma

#### Cons

 Why treat when liver Disease is minimal?

• Risk of antiviral resistance-Lack of future options Child with chronic hepatitis B (≥1 yr of age; persistent HBsAg+ for > 6 mos)





### Scenario 1

- 8yrs/ Male
- Resident of Delhi
- Born FTND to 2<sup>nd</sup> para mother
- Birth weight 3 kg
- Antenatal & Perinatal periods uneventful

# History

• Mother HBeAg+ on family screening

- Father HBsAg +ve
- Elder sibling HBsAg -ve

No maternal H/O jaundice, blood transfusion, body piercing, tattooing, dental extraction, operative procedure

# Examination

- Vitals stable
- No pallor / icterus / edema / clubbing / LNs
- No stigmata of CLD

- P/A soft, non distended Liver 2 cm BCM (span 6 cm) soft, rounded margins, smooth surface
   Spleen not palpable, no CC Child with Incidentally detected
- Rest systems: NAD

Asymptomatic HBsAg+ ?Vertically transmitted No peripheral stigmata of CLD

# Investigations

|                | 6 mo    | 7 mo      | 10 mo   |
|----------------|---------|-----------|---------|
| INR            |         | 1.0       |         |
| Bil/D (mg/dL)  | 0.4/0.1 | 0.3/0.0   | 0.4/0.1 |
| AST (IU/L)     | 56      | 59        | 35      |
| ALT (IU/L)     | 35      | 35        | 27      |
| Alb (g/dL)     | 3.8     | 3.4       | 3.7     |
| HBsAg          |         | +         |         |
| HBeAg          |         | +         |         |
| Anti Hbe       |         | Negative  |         |
| HBV DNA(IU/mL) |         | >1.1X10^8 |         |



**Immunotolerant phase** 

indicated at this stage?

# Investigations

|                | 6 mo    | 7 mo      | 10 mo   | 18 mo     |
|----------------|---------|-----------|---------|-----------|
| INR            |         | 1.0       |         | 1.1       |
| Bil/D (mg/dL)  | 0.4/0.1 | 0.3/0.0   | 0.4/0.1 | 0.4/0.1   |
| AST (IU/L)     | 56      | 59        | 35      | 56        |
| ALT (IU/L)     | 35      | 35        | 27      | 65        |
| Alb (g/dL)     | 3.8     | 3.4       | 3.7     | 3.8       |
| HBsAg          |         | +         | +       | +         |
| HBeAg          |         | +         |         | +         |
| Anti Hbe       |         | Negative  |         |           |
| HBV DNA(IU/mL) |         | >1.1X10^8 |         | >1.1X10^8 |

Liver Biopsy- Chronic Hepatitis with Minimal Activity

Ishak's Modified HAI-3

Fibrosis- 0

Indication of Liver Bx at this stage

# Diagnosis – Scenario 1

- Chronic Hepatitis B infection
  - Immunotolerant  $\rightarrow$  Immunoclearance phase

e+, Anti e-, HBV DNA >1.1X10^8 IU/mL, ALT-65

- Perinatal transmission
- Liver Biopsy Chronic Hepatitis with Minimal Activity Ishak's Modified HAI-3, Fibrosis- 0
- Fibroscan 6.3 kPa

# Family screening

- HBsAg
- Anti-HBs titre
- Total Anti-HBc

|    | HBsAg | Total<br>Anti-HBc | Anti-HBs   | Status                   | Remarks                                 |
|----|-------|-------------------|------------|--------------------------|-----------------------------------------|
| 1. | -     | +                 | <10 mIU/mL | Exposed                  | Offer vaccination                       |
| 2. | -     | -                 | <10 mIU/mL | Unexposed<br>Unimmunized | Offer vaccination                       |
| 3. | _     | -                 | >10 mIU/mL | Unexposed<br>Immunized   | No vaccination                          |
| 4. | +     | +                 | <10 mIU/mL | Infected                 | Further testing HBeAg,<br>Anti-HBe, DNA |

# Chronic HBV infection : Who to treat

Better Response to treatment High ALT

- Inflammation in biopsy
- Low HBV DNA
- Late acquisition of infection

Mei-Hwei Chang. Pediatric Gastroint Dis. 2004

#### Table 2. Special Circumstances in Which Either Temporary or Long-Term Treatment of Children With Chronic HBV Infection Should be Strongly Considered

- Rapid deterioration of liver synthetic function
- Cirrhosis (compensated or decompensated)
- Glomerulonephritis due to HBV infection
- Prevention or treatment of recurrent HBV infection after liver transplantation
- Recipient of a liver graft from an anti-hepatitis B core antigen
  - (anti-HBc)-positive donor
- Need for immunosuppression or chemotherapy
- Presence of coinfections (HBV/HIV, HBV/HCV, HBV/HDV)
- Children with a strong family history of HCC who are in the immune active phase

Pregnant females with high viral load (>20 million IU/mL) in the third trimester, especially those who have had a previous infant with failed perinatal immunoprophylaxis

### **Evolution of Chronic HBV Therapy**



#### **Approved HBV treatments**

Immunomodulator :

Interferon alfa 2a & 2b

Oral Antiviral (Nuc's)

- Lamivudine
- Adefovir
- Entecavir
- Tenofovir

#### PLACEBO-CONTROLLED TRIAL OF RECOMBINANT α<sub>2</sub>-INTERFERON IN CHINESE HBsAg-CARRIER CHILDREN

CHING-LUNG LAI HSIANG-JU LIN ENG-KIONG YEOH ANNA SUK-FONG LOK PUI-CHEE WU CHAP-YUNG YEUNG

Departments of Medicine and Paediatrics, University of Hong Kong, Queen Mary Hospital, Hong Kong

r-IFN was safe but had no long-term beneficial effects on HBsAg carriage in Chinese children.

### Therapeutic strategy for CHB





5-10 years

### Which route to take ?

|               | IFN / PEG-IFN                                                                                                                                 | ANTIVIRALS                                                                                                                                                             |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages    | <ul> <li>Finite duration</li> <li>No resistance</li> <li>Sustained response<br/>(30% HBeAg+, 20% HBeAg -)</li> <li>HBsAg clearance</li> </ul> | <ul> <li>New NUCs (ETV,TDF)<br/>might inhibit viral replication<br/>as monotherapy in most pts<br/>for at least 5 yrs</li> <li>Well tolerated</li> <li>oral</li> </ul> |
| Disadvantages | <ul> <li>Side effects</li> <li>Injections</li> <li>Contraindicated for<br/>decompensated pts</li> </ul>                                       | <ul> <li>Long/indefinite therapy</li> <li>drug resistance</li> <li>Expensive if long term</li> <li>Long term toxicity<br/>unknown</li> </ul>                           |

#### **Treatment goal**

#### Ideal end point :

Loss of HBsAg , anti-HBs seroconversion and loss of cccDNA

#### **Functional Cure :**

Sustained viral suppression along with Hbe seroconversion (HBeAg-ve, anti HBeAb+ve)

# **Options in Immunotolerant phase**

- No treatment recommendation
- Sequential treatment

Lam X 8 wks  $\rightarrow$  LAM + IFN X 44 wks (2 studies)

|                              | D'Antiga<br>(n=23) | Poddar<br>(n=28) |
|------------------------------|--------------------|------------------|
| Age (years)                  | 10 (3-17)          | 6 (2-13)         |
| End treatment seroconversion | 5 (22%)            | 10 (36%)         |
| Sustained seroconversion     | 5 (22%)            | 11 (39.3%)       |
| HBsAg loss                   | 4 (17%)            | 6 (21.5%)        |
| Durability of response       | 100%               | 91%              |
| YMDD mutation                | Nil                | Not done         |

# Options in Immunoclearance phase in children

| Drug       | Duration              | HBeAg loss | DNA loss               | ALT N | HBsAg loss |
|------------|-----------------------|------------|------------------------|-------|------------|
| IFN-alpha  | 24 wks                | 33-48%     | 26%                    | -     | 8-10%      |
| Lamivudine | 1-2 yrs               | 26-51%     | 23-28%                 | -     | 2%         |
| Adefovir   | 1-2 yrs               | 17-58%     | 11-39%                 | -     | 2%         |
| Entecavir  | 24 wks to $\geq 1$ yr | 38%        | 88% in e-<br>23% in e+ | 88%   | _          |
| Tenofovir  | 72 wks                | 21%        | -                      | 74%   | 2%         |

| Sequential treatment                                                  | Duration                                                         | Seroconversion |
|-----------------------------------------------------------------------|------------------------------------------------------------------|----------------|
| IFN + LAM $\rightarrow$ LAM                                           | 6mo → 6 mo                                                       | 49-60%         |
| LAM X 2 mo $\rightarrow$<br>LAM + IFN X 6 mo $\rightarrow$ LAM X 4 mo | $2 \text{ mo} \rightarrow 6 \text{ mo} \rightarrow 4 \text{ mo}$ | 34%            |

## Bikrant et al 2017....ILBS

• Sequential therapy

• Effective in IC phase with ALT more than 100

• Not effective in IT

Pegylated interferon-based sequential therapy for treatment of HBeAg reactive pediatric chronic **hepatitis B**-First study in children. **Lal BB**, Sood V, Khanna R, Rawat D, Verma S, Alam S.

# Conclusion

- Universal immunization HB vaccine
- Immunotolerant children may not be treated unless family history of Cirrhosis and HCC
- Immunoactive patients with high ALT may be treated .....60-70% may seroconvert
- Hbe Ag negative and those with higher levels of activity and fibrosis can be treated
- Need for more studies on treatment indications and stopping rule of the therapy
- Family screening and vaccination




### **Determinants of outcome**

Older age\* HBeAg seroconversion Higher ALT levels at presentation\* Acute exacerbations\* HBV genotype (B > C) Ethnicity (other than Asian)

| Host Factors                                                                                                                                                                                                          | Cirrhosis<br>Virus Factors                                                                                                            | Environmental<br>Factors                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Older age*<br>(longer duration)<br>Male*<br>Immune status                                                                                                                                                             | Ider age* High levels of<br>onger duration) HBV replication*<br>ale* Genotype (C > B)*<br>nmune status HBV variant<br>(core promoter) |                                                                                                                                 |
|                                                                                                                                                                                                                       | HCC                                                                                                                                   | -                                                                                                                               |
| Host Factors                                                                                                                                                                                                          | Virus Factors                                                                                                                         | Environmental Factors                                                                                                           |
| Older age (longer duration)*High levels of HBV replication*Vale*Genotype (C>B)Presence of cirrhosis*HBV variant (core promoter)Family history of HCC*X gene transactivationRace (Asian, African)Kate (Asian, African) |                                                                                                                                       | Concurrent infection (HCV*, HDV)<br>Alcohol consumption*<br>Aflatoxin<br>Smoking†<br>Diabetes mellitus†<br>Obesity <sup>†</sup> |

## Interferon / Peg - Interferon

Gastroenterology. 1998 May;114(5):988-95.

Interferon alfa therapy for chronic hepatitis B in children: a multinational randomized controlled trial.

Sokal EM, Conjeevaram HS, Roberts EA, Alvarez F, Bern EM, Goyens P, Rosenthal P, Lachaux A, Shelton M, Sarles J, Hoofnagle J. Cliniques St. Luc, Pediatric Hepatology, Université Catholique de Louvain, Brussels, Belgium. sokal@pedilucl.ac.be

|                  | Treated<br>70         | Untreated<br>74 | p     |
|------------------|-----------------------|-----------------|-------|
| HBeAg/HBVDNA neg |                       |                 |       |
| at 24 weeks      | 18 <mark>(26%)</mark> | 8 (11%)         | <0.05 |
| at 48 weeks      | 23 (33%)              | 8 (11%)         | <0.05 |
| HBsAg neg        | 7 (10%)               | 1 (1.2%)        | <0.05 |

## Long term effect of alpha interferon in children with chronic hepatitis B

F Bortolotti, P Jara, C Barbera, G V Gregorio, A Vegnente, L Zancan, L Hierro, C Crivellaro, G Mieli Vergani, R Iorio, M Pace, P Con, A Gatta

After 5 yr observation :

 HBeAg clearance : 60% of treated patients 65% of controls But
 HBsAg clearance : 25 % in early IFN responders 0 % in controls

# HBeAg-positive CHB: 3-year follow-up of HBeAg responders to PEG-IFN



Buster et al, Gastroenterology 2008 in press

## NUC's

Lamivudine, Entecavir, Adefovir, Tenofovir

## NUC's in children with chronic HBV



Jonas et al – 2002 NEJM – Lamivudine Jonas et al – 2008 Hepatology – Adefovir Murray et al – 2013 Hepatology – Tenofovir

## HBeAg seroconversion during continued treatment

Lamivudine



Entecavir



Adefovir



Telbivudine



## **Resistance Rates in Nucleoside-Naive Patients**

Genotypic resistance to ENTECAVIR

HBeAg(+) and (-) patients

|    | 0.2% | 0.5% | 1.2% |     |     |
|----|------|------|------|-----|-----|
| N= | 663  | 278  | 149  | 120 | 108 |

Genotypic resistance to LAMIVUDINE<sup>1</sup>





1. Chang TT, et al. *J Gastroenterol Hepatol* 2004; 19:1276-1282; 2. Hadziyannis S, et al. Gastroenterology 2006;131:1743-1751; 3. Standring DN, et al. J Hepatol. 2006;44(Suppl 2):S191 (Poster 514); 4. Lai CL, et al. Hepatology. 2006;44(Suppl 1):222A (Oral 91).



#### **Does Genotype Predict Response to Treatment in Children Infected With Hepatitis B Perinatally?**

| Genotype                  | Interferon alone HBeAg<br>seroconversion/total treated | Interferon + prednisolone<br>HBeAg seroconversion/total treated | Lamivudine                                                                              | Adefovir                                                                | Genotype total                                                                          |
|---------------------------|--------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| A<br>B<br>C<br>D<br>Total | $2/4 (50\%) \\ 0/5 \\ 0/0 \\ 4/11 (36\%) \\ 6/20$      | 4/6 (66.7%)<br>0/2<br>0/1<br>7/10 (70%)<br>11/19                | $\begin{array}{c} 2/5 \; (40\%) \\ 0/1 \\ 0/1 \\ 8/15 \; (53.3\%) \\ 10/22 \end{array}$ | $\begin{array}{c} 2/3 \ (66.7\%) \\ 0 \\ 0/1 \\ 0/3 \\ 2/7 \end{array}$ | $\begin{array}{r} 10/18~(55.5\%)\\ 1/8~(12.5\%)\\ 0/3\\ 19/39~(48.7\%)\\ 68\end{array}$ |

TABLE II. Genotype and HBeAg to Anti-HBe Seroconversion



J. Med. Virol. DOI 10.1002/jmv

## Antibody Levels and Protection after Hepatitis B Vaccination: Results of a 15-Year Follow-up

*Table 1.* The Predicted Geometric Mean Concentrations of Antibody to Hepatitis B Surface Antigen 15 Years after Initial Hepatitis B Vaccination from Linear Mixed Model\*

| Sex and Age Class | s Predicted Anti-HBs Level, mIU/mL |                                     |       |  |  |  |
|-------------------|------------------------------------|-------------------------------------|-------|--|--|--|
|                   | Initial Anti-HBs Level             |                                     |       |  |  |  |
|                   | 100 mIU/mL                         | 100 mIU/mL 1000 mIU/mL 10 000 mIU/m |       |  |  |  |
| Female            |                                    |                                     |       |  |  |  |
| 0-4 y             | 1.8                                | 11.6                                | 72.9  |  |  |  |
| 5–19 y            | 4.3                                | 27.0                                | 169.9 |  |  |  |
| ≥20 y             | 8.4                                | 52.9                                | 332.9 |  |  |  |
| Male              |                                    |                                     |       |  |  |  |
| 0-4 y             | 2.6                                | 16.6                                | 104.1 |  |  |  |
| 5–19 y            | 6.1                                | 38.6                                | 242.8 |  |  |  |
| ≥20 ý             | 12.0                               | 75.6                                | 475.5 |  |  |  |

\* Anti-HBs = antibody to hepatitis B surface antigen.

#### 1 March 2005 Annals of Internal Medicine Volume 142 • Number 5 333

## Antibody Levels and Protection after Hepatitis B Vaccination: Results of a 15-Year Follow-up

*Table 2.* Antibody Concentrations and Markers of Hepatitis B Virus Infection in 24 Study Participants with Evidence of Breakthrough Hepatitis B during 15 Years after Hepatitis B Immunization\*

| Age at First<br>Vaccine         | Sex Time f | Sex Time from First<br>Dose to |                             | A                       | Anti-HBs Level, mIU/mL                           |          |          | HBV Conversion<br>Statust |
|---------------------------------|------------|--------------------------------|-----------------------------|-------------------------|--------------------------------------------------|----------|----------|---------------------------|
| Dose, y                         |            | Anti-HBc<br>Positivity, y      | Highest before<br>Infection | 1 y before<br>Infection | At Time of First<br>Anti-HBc–<br>Positive Result |          |          |                           |
| 22                              | Female     | 1                              | 22                          | NA                      | 214‡                                             | Positive | Definite |                           |
| 54                              | Female     | 2                              | 5                           | 5                       | 604                                              | Positive | Definite |                           |
| 44                              | Female     | 4                              | 505                         | 173                     | 176                                              | Negative | Definite |                           |
| 45                              | Female     | 4                              | 8                           | 1                       | 3026                                             | Positive | Definite |                           |
| 11                              | Female     | 5                              | 518                         | 30                      | 21                                               | Positive | Definite |                           |
| 1 <sup>8</sup> / <sub>12</sub>  | Male       | 5                              | 608                         | 54                      | 183                                              | Negative | Definite |                           |
| 47                              | Male       | 5                              | 37                          | 0                       | 209§                                             | Positive | Definite |                           |
| 25                              | Male       | 5                              | 181                         | 18                      | 16                                               | Negative | Definite |                           |
| 46                              | Female     | 6                              | 44                          | 0                       | 1424                                             | Negative | Definite |                           |
| 46                              | Female     | 7                              | 2                           | NA                      | 229                                              | Negative | Definite |                           |
| 1 <sup>4</sup> / <sub>12</sub>  | Female     | 7                              | 1011                        | 11                      | 540                                              | Negative | Definite |                           |
| 16                              | Male       | 8                              | 23                          | NA                      | 132                                              | Negative | Definite |                           |
| 1 <sup>11</sup> / <sub>12</sub> | Female     | 8                              | 456                         | 2                       | 333                                              | Negative | Definite |                           |
| 6                               | Female     | 8                              | 1817                        | 142                     | 210                                              | Negative | Definite |                           |
| 42                              | Female     | 9                              | 0                           | 0                       | O                                                | Negative | Definite |                           |
| 1 <sup>2</sup> / <sub>12</sub>  | Male       | 11                             | 12                          | 0                       | 291                                              | Positive | Definite |                           |
| 17                              | Male       | 5                              | 86                          | 9                       | 5809                                             | Negative | Possible |                           |
| 59                              | Male       | 5                              | 7                           | NA                      | 406                                              | Negative | Possible |                           |
| 4                               | Female     | 6                              | 4474                        | 292                     | 1692                                             | Negative | Possible |                           |
| 1 <sup>5</sup> / <sub>12</sub>  | Female     | 6                              | 11                          | 4                       | 3                                                | Negative | Possible |                           |
| 49                              | Female     | 7                              | 6284                        | NA                      | 3939**                                           | Negative | Possible |                           |
| 1 <sup>8</sup> / <sub>12</sub>  | Male       | 9                              | 4850                        | 4850                    | 1417                                             | Negative | Possible |                           |
| 9                               | Male       | 11                             | 18 456                      | 951                     | 889                                              | Negative | Possible |                           |
| 65                              | Female     | 15                             | 2                           | 0                       | 0                                                | Negative | Possible |                           |

#### 1 March 2005 Annals of Internal Medicine Volume 142 • Number 5 333

## **HBV - NEW MARKER**

## HBsAg levels

- Serum levels of HBsAg correlates with intrahepatic cccDNA concentration
- Decline in HBsAg level on treatment may herald induction of immune control
- HBsAg levels during treatment can indentify patients with very high or very low probability of response.

## Response-Guided Peginterferon Therapy in Hepatitis B e Antigen-Positive Chronic Hepatitis B Using Serum Hepatitis B Surface Antigen Levels

Milan J. Sonneveld,<sup>1</sup> Bettina E. Hansen,<sup>1,2</sup> Teerha Piratvisuth,<sup>3</sup> Ji-Dong Jia,<sup>4</sup> Stefan Zeuzem,<sup>5</sup> Edward Gane,<sup>6</sup> Yun-Fan Liaw,<sup>7</sup> Qing Xie,<sup>8</sup> E. Jenny Heathcote,<sup>9</sup> Henry L.-Y. Chan,<sup>10</sup> and Harry L.A. Janssen<sup>1,9</sup>

- 803 adults (3 global studies)
- Stopping rule
  - Wk 12 No decline of HBsAg titre for genotype A,D
     HBsAg titre >20,000 IU/ml in genotype B, C
  - Wk 24 No decline from baseline at wk 24
- Prediction rule
  - High probability of response HBsAg <1500 IU/ml</li>
  - Low probability of response HBsAg >20,000 IU/ml

## Definitions

Inactive HBsAg carrier state

- 1. HBsAg+ > 6 months
- 2. HBeAg-, anti-HBe+
- 3. Serum HBV DNA <2,000 IU/ml
- 4. Persistently normal ALT/AST levels

5. Liver biopsy confirms absence of significant hepatitis Resolved hepatitis B

1. Previous known history of acute or chronic hepatitis B or the presence of anti-HBc  $\pm$  anti-HBs

2. HBsAg-

- 3. Undetectable serum HBV DNA#
- 4. Normal ALT levels

# CAN WE DO BETTER WITH EXISTING TREATMENTS?

Chronic HBV infection Who should be treated?

• Those with active disease who are more likely to clear the virus spontaneously

• Those with tolerant disease who are less likely to clear the virus spontaneously

#### COMBINED LAMIVUDINE/INTERFERON-α TREATMENT IN 'IMMUNOTOLERANT' CHILDREN PERINATALLY INFECTED WITH HEPATITIS B: A PILOT STUDY

LORENZO D'ANTIGA, MD, MARION AW, MD, MARK ATKINS, FRCPATH, ALISON MOORAT, BSC, DIEGO VERGANI, MD, AND GIORGINA MIELI-VERGANI, MD

## Harnessing the innate and adaptive immune system: rationale for combining IFN and NUCs in HBV treatment



Figure adapted from Thimme R, et al. J Hepatol 2013;58:205–9. Micco L, et al. J Hepatol. 2013;58:225–33.

#### COMBINED LAMIVUDINE/INTERFERON-α TREATMENT IN 'IMMUNOTOLERANT' CHILDREN PERINATALLY INFECTED WITH HEPATITIS B: A PILOT STUDY

LORENZO D'ANTIGA, MD, MARION AW, MD, MARK ATKINS, FRCPATH, ALISON MOORAT, BSC, DIEGO VERGANI, MD, AND GIORGINA MIELI-VERGANI, MD

8 weeks lamivudine followed by 44 weeks lamivudine + IFN- $\alpha$ 

- 23 children (16 oriental)
- Anti-HBe seroconversion : 5/23 (22%)
- Anti-HBs seroconversion : 4/23 (17%)
- No YMDD mutations

J Paediatr, 2006

J Paediatr, 2006

# King's pilot treatment study in children with infancy-acquired CHB

Therapy response results

|            | End of therapy | Follow-up Week | Follow-up  | Follow-up  | Follow-up          |
|------------|----------------|----------------|------------|------------|--------------------|
|            |                | 24             | Year 1     | Year 5     | Year 10            |
| HBeAg      | 5 patients     | 5 patients     | 6 patients | 7 patients | 11 patients        |
| clearance  | (22%)          | (22%)          | (26%)      | (30%)      | <mark>(48%)</mark> |
| HBsAg      | 4 patients     | 5 patients     | 5 patients | 5 patients | 5 patients         |
| clearance  | (17%)          | (22%)          | (22%)      | (22%)      | (22%)              |
| HBV DNA    | 4 patients     | 5 patients     | 5 patients | 5 patients | 5 patients         |
| <100 IU/ml | (17%)          | (22%)          | (22%)      | (22%)      | (22%)              |
| YMDD       | 0 patients     | 0 patients     | 0 patients | 0 patients | 0 patients         |
| mutation   | (0%)           | (0%)           | (0%)       | (0%)       | (0%)               |

## Cure for immune-tolerant hepatitis B in children: is it an achievable target with sequential combo therapy with lamivudine and interferon?

U. Poddar,<sup>1</sup> S. K. Yachha,<sup>1</sup> J. Agarwal<sup>1</sup> and N. Krishnani<sup>2</sup> <sup>1</sup>Department of Pediatric Gastroenterology; and <sup>2</sup>Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India

- 28 children
- Anti HBe seroconversion 11/28 (39%)
- Anti HBs seroconversion 6/28 (21%)

#### Immune and Viral Profile from Tolerance to Hepatitis B Surface Antigen Clearance: a Longitudinal Study of Vertically Hepatitis B Virus-Infected Children on Combined Therapy<sup>∇</sup>

Ivana Carey,<sup>1</sup> Lorenzo D'Antiga,<sup>1</sup> Sanjay Bansal,<sup>1</sup> Maria Serena Longhi,<sup>1</sup> Yun Ma,<sup>1</sup> Irene Rebollo Mesa,<sup>2</sup> Giorgina Mieli-Vergani,<sup>1</sup> and Diego Vergani<sup>1</sup>\*

Institute of Liver Studies and Paediatric Liver Centre, King's College London School of Medicine at King's College Hospital, Denmark Hill, London SE5 9RS, United Kingdom,<sup>1</sup> and MRC Centre for Transplantation, King's College London School of Medicine at Guy's Hospital, St. Thomas Street, London, SE1 9RT, United Kingdom<sup>2</sup>



Journal of Viral Hepatitis, 2014

doi:10.1111/jvh.12316

#### HBsAg plasma level kinetics: a new role for an old marker as a therapy response predictor in vertically infected children on combination therapy

I. Carey, M. Bruce, M. Horner, Y. Zen, L. D'Antiga, S. Bansal, D. Vergani and

G. Mieli-Vergani Institute of Liver Studies and Paediatric Liver, GI & Nutrition Centre, King's College London School of Medicine at King's College Hospital, London, UK

## Ongoing treatment trial

 Pegylated Interferon monotherapy for children with chronic HBV infection with abnormal liver function tests

 Pegylated Interefron +/- Oral NUCs for immunotolerant children with chronic HBV infection

## FUTURE DIRECTIONS FOR HBV TREATMENT - ? CURE

## Future directions: drugs in development



Development stage: preclinical, clinical

Zoulim F, et al. Antiviral Res 2012;96(2):256–9; HBF Drug Watch, Available at: http://www.hepb.org/professionals/hbf\_drug\_watch.htm. Accessed 15 Aug 2013. Zoulim F, et al. Gastroenterology 2013;144:1342–4.

| Compound                  | Mechanism/ Target <sup>†</sup>                             | Stage of Development | Sponsor                | Reference                                          |
|---------------------------|------------------------------------------------------------|----------------------|------------------------|----------------------------------------------------|
| Direct-acting antivirals: |                                                            |                      |                        |                                                    |
| GS-7340 (tenofovir        | Polymerase (prodrug of tenofovir)                          | Phase 2/3            | Gilead Sciences        | 47; NCT0194047, NCT01940341 <sup>‡</sup>           |
| CMX157                    | Polymerase (prodrug of tenofovir)                          | Phase 1/2§           | Contravir (Chimerix)   | 146; NCT01080820 <sup>‡</sup>                      |
| NVR1221/3778              | Capsid                                                     | Phase 1/2            | Novira                 | 84; NCT02112799 <sup>‡</sup>                       |
| Sulfamoylbenzamides       | Capsid                                                     | Animal               | Oncore                 | 147                                                |
| GLS4                      | Capsid                                                     | Phase 1              | HEC Pharm Group, China | 148                                                |
| Bay41-4109                | Capsid                                                     | Phase 1              | AiCuris                | 83                                                 |
| REP 2139-Ca               | Assembly/HBsAg                                             | Phase 1/2            | Replicor               | NCT02233075 <sup>‡</sup>                           |
| ARC-520                   | RNAi                                                       | Phase 1/2            | Arrowhead              | 94; sponsor's website;<br>NCT02065336 <sup>‡</sup> |
| TKM-HBV                   | RNAi                                                       | Phase 1              | Tekmira                | Sponsor's website; NCT02041715 <sup>‡</sup>        |
| ALN-HBV                   | RNAi                                                       | Animal               | Alnylam                | Sponsor's website                                  |
| DNA-directed RNAi         | RNAi                                                       | Animal               | Benitec                | Sponsor's website                                  |
| ISIS HBV                  | Antisense                                                  | Phase 1              | Isis                   | Sponsor's website                                  |
| Host targeting agents:    |                                                            |                      |                        |                                                    |
| Myrcludex B               | Entry/NTCP                                                 | Phase 1/2            | Myr-GmbH/Hepatera      | 75                                                 |
| Birinapant                | Apoptosis/second<br>mitochondrial activator of<br>caspases | Phase 1              | Tetralogic             | Sponsor's website; NCT02288208 <sup>‡</sup>        |
| Flavonoids                | STING agonist (pattern recognition receptor)               | Animal               | Oncore                 | 149                                                |
| NVP018                    | Cyclophilins, IRF-9                                        | Animal               | Oncore (NeuroVive)     | Sponsor's website                                  |
| Epitope HBV               | Glucosidase/therapeutic<br>vaccine                         | Animal               | Blumberg Institute     | 150                                                |

#### Table 1. Experimental HBV Therapeutics in Late Preclinical or Clinical Stage\*

| Immune modulatory agents:                                              |                           |            |                                                                       |
|------------------------------------------------------------------------|---------------------------|------------|-----------------------------------------------------------------------|
| GS-9620                                                                | TLR-7 agonist             | Phase 2    | Gilead Sciences                                                       |
| Nivolumab                                                              | PD-1 blockade             | Phase 1    | BMS                                                                   |
| SB 9200HBV                                                             | RIG-I and NOD2 activation | Phase 1/2  | INC/Springbank                                                        |
| GS-4774                                                                | Therapeutic vaccine       | Phase 2/3  | Gilead Sciences/Globelmmune                                           |
| ANRS HB02                                                              | Therapeutic vaccine       | Phase 1/2  | French National Agency for<br>Research on AIDS and Viral<br>Hepatitis |
| Heplisav B Dynavax 601                                                 | Therapeutic vaccine       | Phase 1    | Dynavax                                                               |
| Nasvac                                                                 | Therapeutic vaccine       | Phase 2/3  | CGEB, Cuba                                                            |
| TG1050                                                                 | Therapeutic vaccine       | Phase 1/1b | Transgene                                                             |
| ${\rm HBIG} + {\rm GM}{\text{-}}{\rm CSF} + {\rm HBV} \text{ vaccine}$ | Therapeutic vaccine       | Phase 1/2  | Beijing 302 Hospital                                                  |
| HBV vaccine + IFN- $\alpha$ 2b + IL-2                                  | Therapeutic vaccine       | Phase 2/3  | Tongji Hospital                                                       |
| HBV vaccine-activated dendritic cells                                  | Therapeutic vaccine       | Phase 1/2  | Third Affiliated Hospital, Sun<br>Yat-Sen University                  |
| Euvax + PEG-IFN- $\alpha$                                              | Therapeutic vaccine       | Phase 2/3  | Seoul National University                                             |
| PD-1 monoclonal antibody                                               | PD1 blockade              | Animal     | AcadSin                                                               |
| Altravax HBV                                                           | Therapeutic vaccine       | Animal     | Altravax                                                              |
| INO-1800                                                               | Therapeutic vaccine       | Animal     | Innovio                                                               |
|                                                                        |                           |            |                                                                       |

122; NCT02166047<sup>‡</sup> 151; Sponsor's website, NCT01658878<sup>‡</sup> 152; NCT01803308<sup>‡</sup> 144; NCT02174276<sup>‡</sup> 141; NCT02166047<sup>‡</sup> 153; NCT01023230<sup>‡</sup> 154 NCT02428400 NCT01878565

NCT02360592 (labeled as Phase 4) NCT01935635

NCT02097004 (labeled as Phase 4) 155 Sponsor's website Sponsor's website

## Future curative CHB regime :

Approach

**Entry/release inhibitor** 

**Potential benefit** 

Prevent entry/spread <sup>-</sup>

cccDNA inhibitor

Deplete cccDNA reservoir



Potent polymerase inhibitor

Suppress replication

Immune modulator

Activate or restore antiviral immunity



## Thank you

### Infancy-acquired chronic HBV infection Predictors of outcome



Carey et al, submitted to AASLD 2014

#### Infancy-acquired chronic HBV infection

Predictors of outcome



Carey et al, submitted to AASLD 2014