
PRAKASH

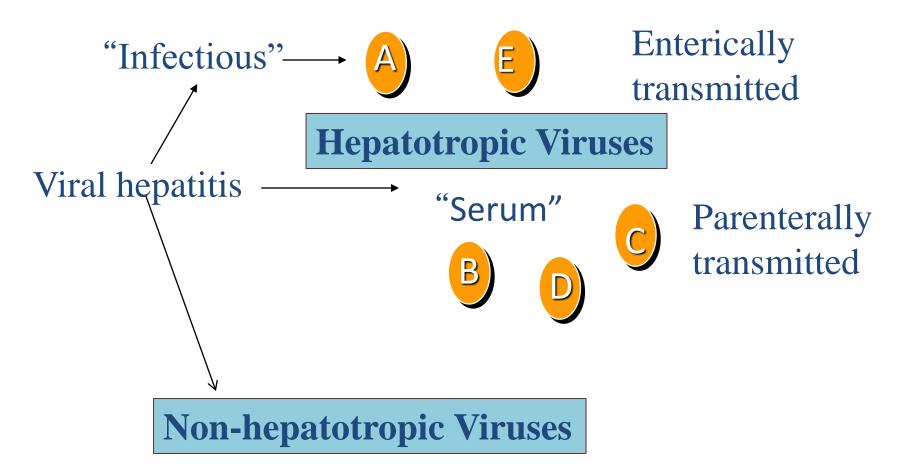
PRogrammed Approach to Knowledge And Sensitization on Hepatitis

HEPATITIS INDUCTION PROGRAM

Viral Hepatitis A & E

Dr. Reshu Agarwal

Associate Professor,


Clinical Virology, ILBS

New Delhi

Viral Hepatitis

: CMV/EBV/HSV/Dengue/influenza

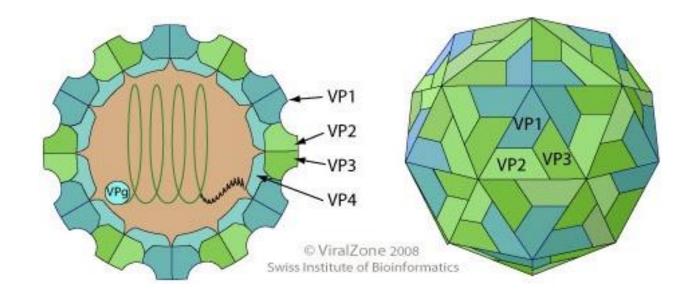
India: Viral Hepatitis

Viruses causing hepatitis - an overview

	HAV	HBV	HCV	HDV	HEV	
Family	Picornaviridae	Hepadnaviridae	Flaviviridae	Delta agent (satellite virus)	Hepeviridae	
Nucleic acid	ssRNA	dsDNA	ssRNA	ssRNA	ssRNA	
Routes of transmission	Fecal-oral	Parenteral Parenteral		Parenteral	Fecal-oral	
Chronic hepatitis	No	Yes	Yes	Yes	No (Yes- HEV genotype 3)	
Oncogenic potential (HCC)	No	Yes	Yes	-	No	
Vaccine available	Yes	Yes	No	HBV vaccine is protective	Yes (China)	

Viral hepatitis - various clinical presentations

- Acute viral hepatitis (AVH)
- Chronic viral hepatitis Chronic hepatitis B (CHB)
 - Chronic hepatitis C (CHC)

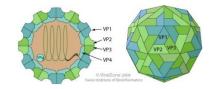

- Transaminitis
- Acute liver failure (ALF), Fulminant hepatic failure (FHF)
- Acute-on-chronic liver failure (ACLF)
 - acute (precipitating) event <u>on</u> an underlying chronic liver disease (CLD)
 - \downarrow
 - Acute viral hepatitis by HAV
 - Acute viral hepatitis by HEV
 - Acute viral hepatitis/reactivation (HBV)
 - Super-infection with HDV
 - Drug induced liver injury (DILI)

- Alcoholic liver disease (ALD)
- Chronic hepatitis B (CHB)
- Chronic hepatitis C (CHC)
- Non-alcoholic fatty liver disease (NAFLD)
- Drug induced liver injury (DILI)
- Autoimmune hepatitis (AIH)
- Cryptogenic liver disease

Hepatitis A Virus (HAV)

HAV - taxonomy

Family	Genus	Viruses	Example(s)
Picornaviridae	Enterovirus	Enteroviruses	Poliovirus 1-3, Coxsackieviruses A(1-24) & B(1-6), Echoviruses 1-33, Enteroviruses 68-116
		Rhinoviruses	HRV A,B,C - > 149 types
	Parechovirus	Parechoviruses	Parechoviruses 1-14
	Hepatovirus	HAV	Hepatitis A virus (HAV)
	Aphthousvirus	-	Foot-and-mouth disease virus (cattle)
	Cardiovirus	-	Encephalomyocarditis virus (mice)



Hepatitis A virus (HAV)

■ Family- Picornaviride; Genus- Hepatovirus

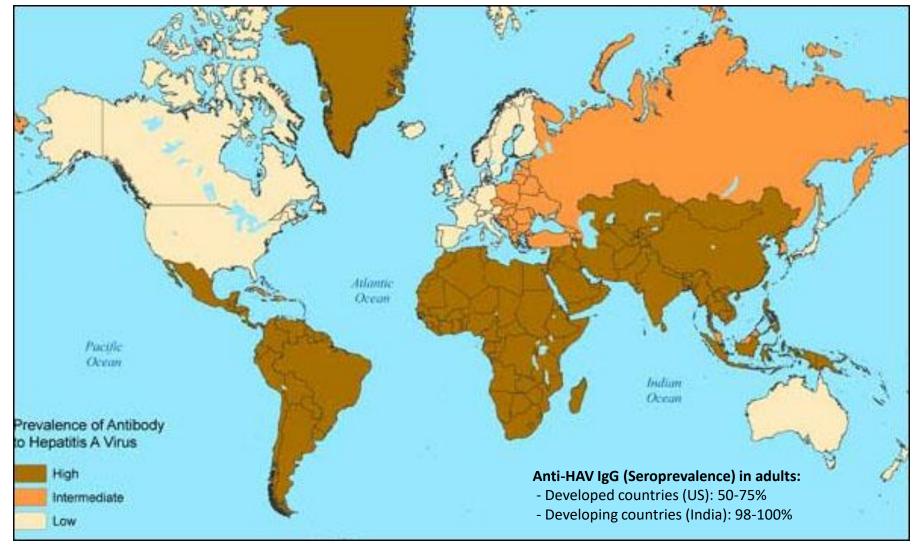
- transmission Feco-oral
 - contaminated water
 - food-borne illness- shellfish (molluscs- oyesters, etc.)
- common cause of Acute Viral Hepatitis in the pediatric age group
- Outbreak

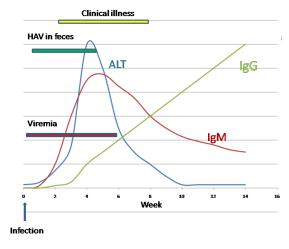
HAV - Sources of Infection

IT WON'T LOOK GOOD THAT YOU SWAM IN THE GULF BUT NOT HERE.

> POOP WARNING

DADDY, I HATE VACATION!




HAV - Global seroprevalence (based on Anti-HAV IgG positivity)

HAV - Clinical spectrum

Incubation period - 15 to 45 days (\approx 30 days)

- subclinical (asymptomatic) infection
 - in children below 5yrs.- most infections (≈87%) are subclinical
 - in adults- only $\approx 18\%$ are subclinical
- Acute viral hepatitis (AVH)
- Fulminant hepatitis (rare)
- ACLF (HAV is the acute precipitating event)

HAV does not lead to chronic hepa

Age of patient with HAV infection	Fulminant HAV infection and mortality rate (%)			
< 14 years	0.1			
15-39 years	0.3			
> 40 years	2.1			

HAV vs. HEV

	HAV	HEV
Transmission	Fecal-oral	Fecal-oral
Age at presentation of AVH	First decade of life; ≤ 10 - 15 yrs.	Older adolescents/adults; ≥ 20 - 50 yrs.
Sero-prevalence (IgG)	 Anti-HAV IgG: ubiquitous (≈ 100%) by age 10-15 yrs. in developing countries protective into later life 	Anti-HEV IgG: - 20-40% in adults - low (5-10%) before age 15 yrs Non protective

- Incubation period 10-45 days
- Prodromal stage
- Icteric phase
- Convalescent phase

INCUBATION OR PRECLINICAL PERIOD

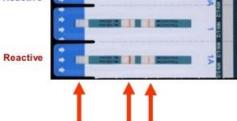
10 - 50 days
Asymptomatic
Active replication of virus

PRODROMAL OR PRE-ICTERIC PHASE

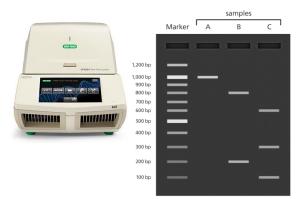
several days to more than a week
Characterized by loss of appetite, fatigue, abdominal pain,
nausea and vomiting, fever, diarrhoea

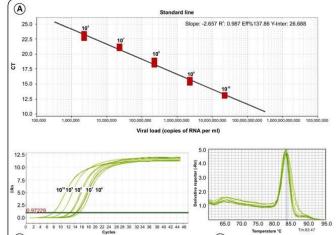
ICTERIC PHASE

- Jaundice develops at total bilirubin levels exceeding 20 40 mg/l.
- Begins within 10 days of the initial symptoms.
- Characterized by golden-brown urine, pale stools, yellowish discoloration of the mucous membranes, conjunctivae, sclerae, and skin.
- Fever usually improves after the first few days of jaundice.
- Viremia terminates shortly after hepatitis develops
- Faeces remain infectious for another 1 2 weeks


CONVALESCENT PERIOD

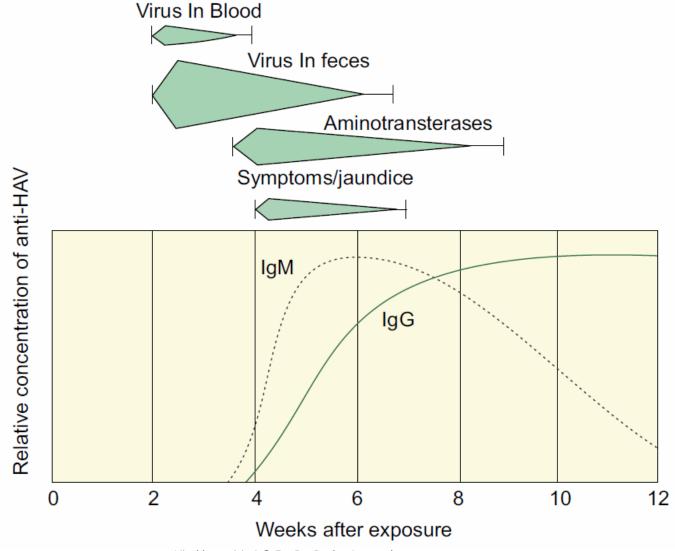
- resolution of the disease is slow, but patient recovery complete.
- Relapsing hepatitis occurs in 3 20%.


Sample Pad Test line Control line



Viral hepatitis A & E – Dr. Reshu Agarwal

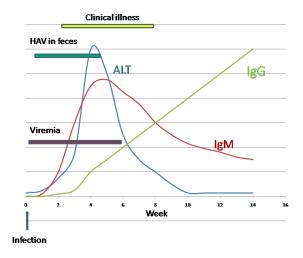
B

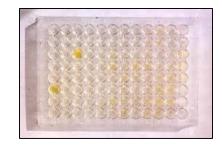


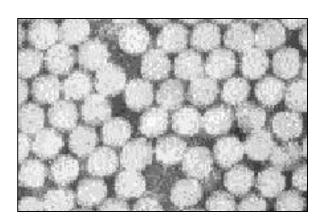
©

HAV - Laboratory diagnosis

1. Serology (Antibody detection):


- Anti-HAV IgM
- Anti-HAV IgG


2. Molecular assays (NAT):

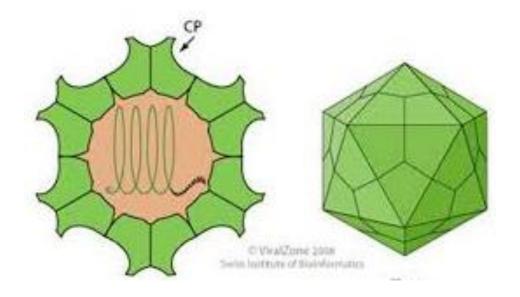

- RT-PCR for HAV RNA (from stool, blood)

3. <u>Electron Microscopy</u> (stool):

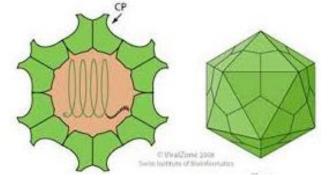
- virions ≈27 nm

Laboratory diagnosis of HAV

TESTS	IMPORTANCE				
Anti-HAV IgM	 Confirms diagnosis of acute Hepatitis A Rapidly increases in titer over 4-6 weeks Declines to non-detectable within 3-6mths 				
Total Anti-HAV	■ In the absence of either IgM anti-HAV or an abnormal ALT level, it is suggestive of previous infection with HAV or successful vaccination and protection against future infection				
HAV RNA HAV RNA HAV or viral antigen can be detected in the patients 1 to 2 weeks before symptoms deviation in blood if patients immunosuppressed					
Liver function tests	 LFTs especially ALT and AST are sensitive measures of parenchymal liver damage but are not specific for hepatitis A. 				


HAV prophylaxis

- HAV vaccine
 - formalin inactivated, human diploid cell culture based
 - two doses, 6-12 months apart
 - indications non-immune residents in an endemic region
 - travel from developed country to an endemic area
 - men who have sex with men (MSM) etc.
- HAIG passive immunization with immunoglobulin
 - given before or within 14 days of exposure


Hepatitis E Virus (HEV)

HEV - Introduction

- Family- Hepeviridae; Genus- Hepevirus
- Virion- 27-34 nm, non-enveloped
- ssRNA, positive sense
- 7.2-kb genome
- 4 genotypes- HEV1,2,3 and 4
- one serotype

- Clinical spectrum Acute viral hepatitis (AVH)
 - Fulminant hepatic failure (FHF)- pregnancy
 - Chronic hepatitis E in the immunocompromised

Discovery of HEV

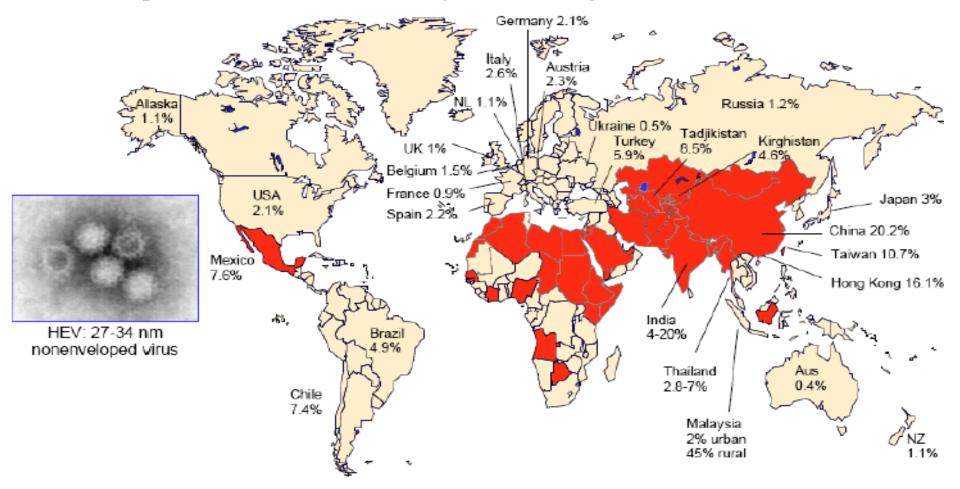
Hepatitis E

Nassim Kamar, Richard Bendall, Florence Legrand-Abravanel, Ning-Shao Xia , Samreen Ijaz, Jacques Izopet, Harry R Dalton

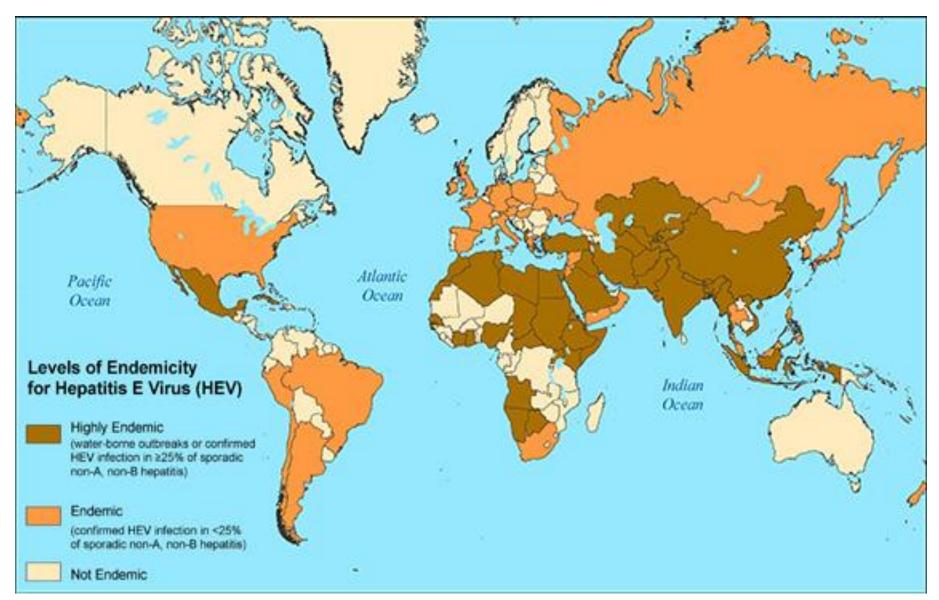
Hepatitis E virus (HEV) was discovered during the Soviet occupation of Afghanistan in the 1980s, after an outbreak of unexplained hepatitis at a military camp. A pooled faecal extract from affected soldiers was ingested by a member of the research team. He became sick, and the new virus (named HEV), was detected in his stool by electron microscopy. Subsequently, endemic HEV has been identified in many resource-poor countries. Globally, HEV is the most common cause of acute viral hepatitis. The virus was not initially thought to occur in developed countries, but recent reports have shown this notion to be mistaken. The aim of this Seminar is to describe recent discoveries regarding HEV, and how they have changed our understanding of its effect on human health worldwide.

- 1983- Balayan MS successfully transmitted the disease into himself
- oral administered pooled stool extracts of 9 patients
- developed acute viral hepatitis
- demonstrated virus particles in his own stool by IEM

Hepatitis E virus (HEV)


- HEV infection is the most frequent cause of acute sporadic and epidemic hepatitis in India (30-70% cases are due to HEV)
- Dual infection with HAV and HEV have been more frequently reported among children with ALF
- HEV is also the major cause of Acute liver failure in India
- high mortality rate in pregnant women (25% in the third trimester)

HEV - Global seroprevalence


- commonest cause of enterically transmitted AVH
- occurs worldwide
- Seroprevalence (as determined by Anti-HEV IgG)

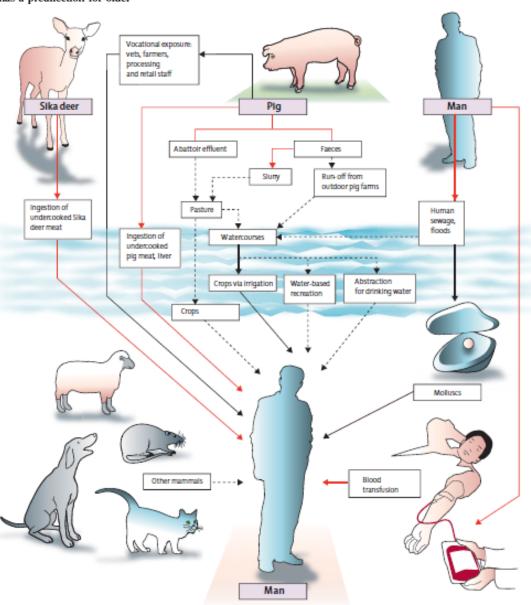
HEV - Global prevalence (endemicity)

HEV - Global distribution of genotypes

Hepatitis E: an emerging infection in developed countries

Harry R Dalton, Richard Bendall, Samreen Ijaz, Malcolm Banks

WHO Collaborating Centre on Viral Hepatitis & Liver Diseases


Hepatitis E is endemic in many developing countries where it causes substantial morbidity. In industrialised countries, it is considered rare, and largely confined to travellers returning from endemic areas. However, there is now a growing body of evidence that challenges this notion. Autochthonous hepatitis E in developed countries is far more common than previously recognised, and might be more common than hepatitis A. Hepatitis E has a predilection for older

men in whom it causes substantial morbidity and mortality. The disease has a poor proexisting chronic liver disease, and is frequently misdiagnosed as drug-induced liver injuinfection remain uncertain, but it might be a porcine zoonosis. Patients with unexplains for hepatitis E, whatever their age or travel history.

> Lancet Infect Dis 2008; 8: 698-709

> > Viral hepa

HEV transmission routes in developed countries

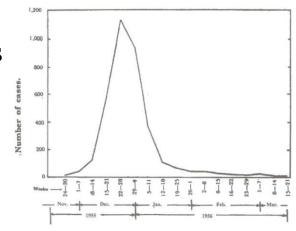
HEV - Epidemiology

	HEV in developing countries	HEV in developed countries
Genotypes	1 and 2	3 and 4
Source of infection	Humans	Zoonotic (pigs are primary host)
Route of infection	Fecal-oral via infected water	Fecal-oral via infected pig meat, infected water
Outbreaks	Yes, can involve thousands of cases	No (occasional small case clusters from point-source food outbreaks)
Seasonality	Yes e.g. outbreaks during monsoons	No

Most cases of AVH-E in developed countries are autochthonous

HEV Epidemiology - India

- globally commonest cause of AVH in those ≥ 15 yrs, adults
- endemic, >22,00,000 cases/year
- 30-60% of all cases of sporadic hepatitis are due to HEV
- occasional epidemics
- HEV genotype 1 (HEV1)


Delhi, 1955-1956

• 1 Dec.1955 to 20 Feb.1956

- first reported large outbreak of hepatitis later serologically attributed to HEV
- Jamuna river flooded its banks following monsoons
- Wazirabad water treatment plant got contaminated by nearby sewage drains

- 29,300 cases reported
- single peak, rapid dissipation; no secondary or tertiary waves
- mortality in pregnancy- 10%

HEV epidemics - India

Year	Region / City	Population affected (N)	Mortality, Overall (%)	Mortality, Pregnancy (%)	
1955-56	Delhi	29,300	0.2	5/48 (11)	
1960	Kharagpur	65	-	-	
1961	Aurangabad	865	0.3	-	
1966	Siliguri	4,287	0.1	-	
1975-76	Ahmedabad	2,572	2.4	-	
1978	Kashmir	275	3.6	6/8 (75)	
1990-91	Kanpur	79,091	0.1	13/48 (27)	
2008	Shahbad (Har)	160	-	-	
2010	Nellore	23,915	1.3	-	

Acharya SK , Natl Med J India, 2006 Vivek R, Trop Med Int Health, 2010

HEV - Clinical spectrum

- Acute Viral Hepatitis (AVH)
- Acute-on-chronic liver failure (ACLF)

- Fulminant Hepatic failure (FHF) in pregnancy
- Chronic Viral Hepatitis E in the immunocompromised
- Extrahepatic manifestations

HEV and DILI



HEV infection may be misdiagnosed as DILI. Drug-induced liver injury (DILI) occurs more frequently in the elderly (in whom polypharmacy is common), as does autochthonous hepatitis E, and the clinical features may be indistinguishable. The diagnosis of DILI is based on a number of criteria. These include a temporal relationship between starting a drug and developing hepatitis (usually 5 to 30 days), a temporal relationship between stopping the offending drug and the resolution of hepatitis, and the exclusion of all other causes of hepatocellular injury. In a study of a group of patients with criterion-referenced DILI from Southwest England, it was found that the diagnosis of DILI had been made in error in some patients, as 13% of patients with "DILI" who were tested retrospectively had HEV genotype 3 infection (24). In a more recent study from the United States, 3% of patients with "DILI" had been diagnosed erroneously, as they had hepatitis E on subsequent testing (25). These studies illustrate the importance of excluding other causes of hepatocellular injury before making a diagnosis of DILI and suggest that the diagnosis of DILI should not be made without excluding HEV infection, particularly in individuals with high serum alanine aminotransferase levels.

HEV in pregnancy - maternal & neonatal health

- Maternal ↑ risk of hemorrhage, eclampsia
 - Fulminant hepatic failure (FHF)
 - Hepatic encephalopathy
 - DIC
- Fetal stillbirths
 - vertical transmission- \(\) neonatal morbidity & mortality

HEV genotypes 1 & 2 only

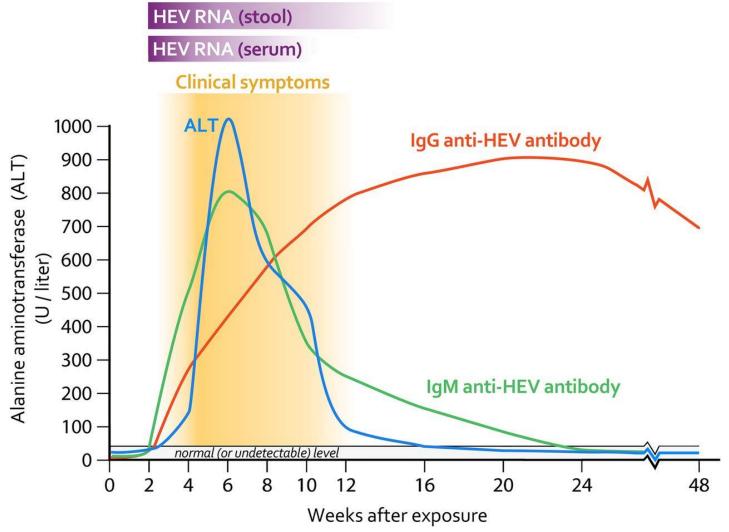
Adverse outcomes are unique to genotypes 1 & 2 (NOT genotypes 3 & 4) **Unusual genotype 1** in Egypt



D/Ds of liver diseases/jaundice during pregnancy

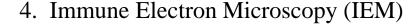
- Acute fatty liver of pregnancy
 - disorder of mitochondrial fatty acid metabolism
 - LCHAD (long-chain 3-hydroxyacyl-coenzyme A dehydrogenase) deficiency
- Fulminant hepatic failure (FHF) following AVH-E
- Pre-eclampsia, HELLP syndrome
- Intrahepatic cholestasis of pregnancy

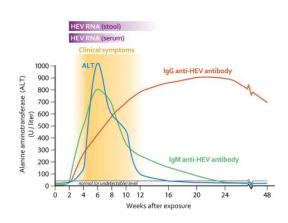
Extrahepatic manifestations of HEV


- Neurological disorders (HEV1, HEV3)
 - Guillain-Barre syndrome- [Anti-ganglioside GM 1,2 positive]
 - Bell's palsy
 - acute transverse myelitis
 - neuralgic amyotrophy
- Renal ds. (HEV1, HEV3)
 - MPGN, MGN
- Acute pancreatitis (HEV1)
- Hematological thrombocytopenia
 aplastic anaemia

HEV - Diagnosis

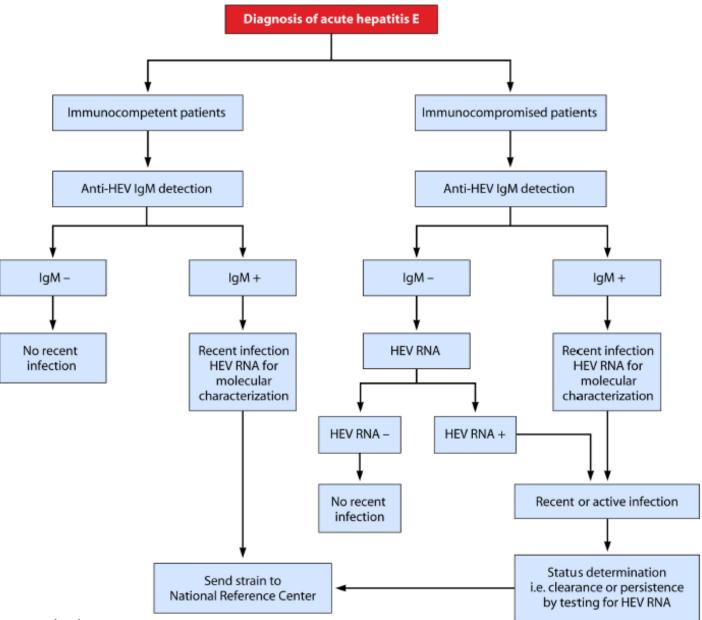
AVH-E Incubation period = 4 weeks (2 weeks to 6 weeks)





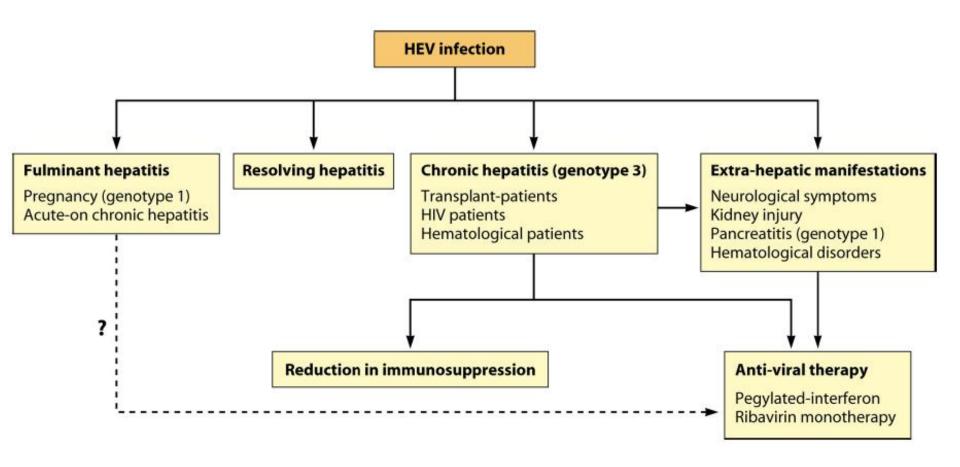
HEV - Lab. diagnosis

- 1. Antibody detection (ELISA)- ORF2/ORF3 peptides
 - Anti-HEV IgM (persist for 2-3 mo, rarely 6 mo.)
 - Anti-HEV IgG (persist for a few yrs.)
- 2. Antigen detection (ELISA)- ORF2/ORF3
 - HEV Ag (positive between 3 to 6 wks. approx.)
- 3. Molecular techniques RT-PCR



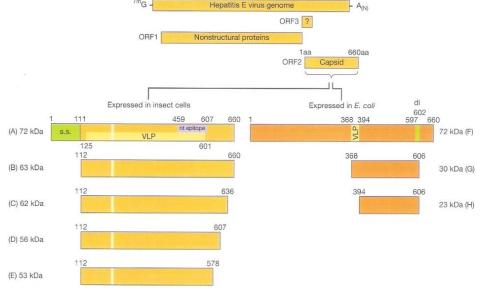
Lab. diagnosis of AVH-E

Chronic Hepatitis E



- HEV RNA-positive serum or stools for ≥ 3 months
- No report till date in developing countries.
- Increasingly reported in developed countries with HEV genotype 3 infection
- Risk population
- □ Solid organ transplant patients on immunosuppressive treatment (60% of HEV patients evolve to CHE).
- ☐ HIV infected patients
- ☐ Patients with hematological malignancies

HEV - clinical spectrum and its management



Kamar N. Clin Microbiol Rev, 2014

HEV vaccines

Manufacturer	Truncated capsid antigen	HEV genotype used	Expressed from	Vaccinated population	Dose	Regimen (months)	HEV genotype in population tested	Efficacy (95% CI)
GlaxoSmithKline , Belgium	aa 112-607	HEV 1	Baculovirus in insect cells	Military (young Nepalese men)	20 μg, with alum	0, 1, 6	HEV 1	95.5% (89% - 99%)
Xiamen Innovax Biotech, China	aa 368-606	HEV 1	Escherichia coli	General (Chinese adults, all ages)	$30\mu g$, with alum	0, 1, 6	HEV 4	100 % (72%-100%)

Plotkins. Vaccines, 2013

