

PROJECT PRAKASH

Pogrammed Approach to Knowledge and Sensitization on Hepatitis

DIAGNOSIS & MANAGEMENT OF HEPATITIS C

Dr. Rajan V, Asst. Professor, Dept of Hepatology, ILBS

INSTITUTE OF LIVER & BILIARY SCIENCES, NEW DELHI

www.ilbs.in

INSTITUTE OF LIVER & BILIARY SCIENCES, NEW DELHI

- Interferon is gone in the US; ribavirin . . . not quite ٠
- SVR in > 95% of pts ٠
- "Difficult-to-cure" populations no longer difficult ٠
 - **Black** race ٠
 - HIV coinfection Cirrhosis •

- Renal failure & kidney transplant

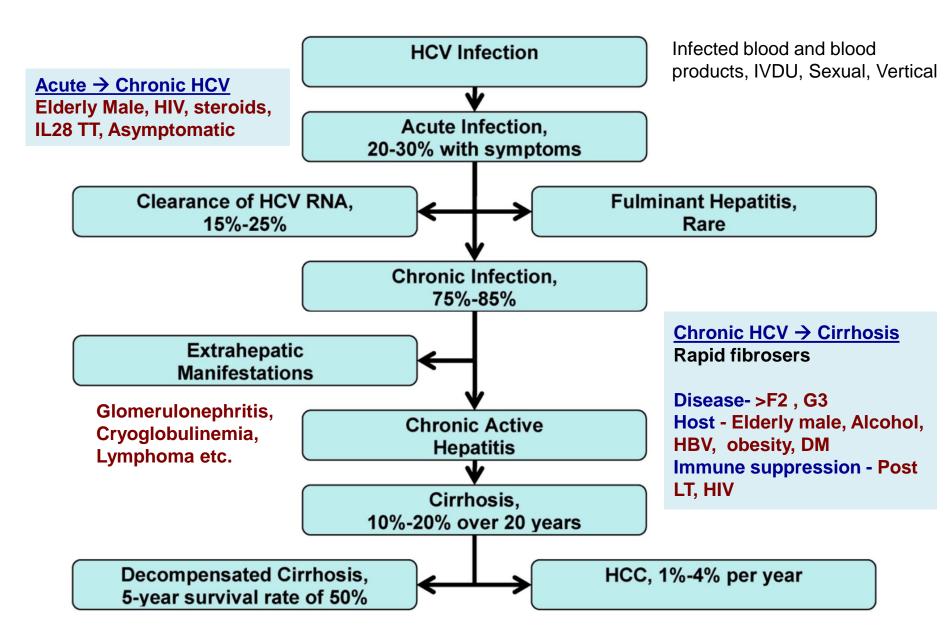
- Older age - Liver transplant

- Persons who inject drugs (PWID) ٠
- Genotype 3 remains more challenging (but not by much) ٠
- Emergent issues and controversies: •
 - **HBV** reactivation ٠
- Cost and access issues persist but improving ٠

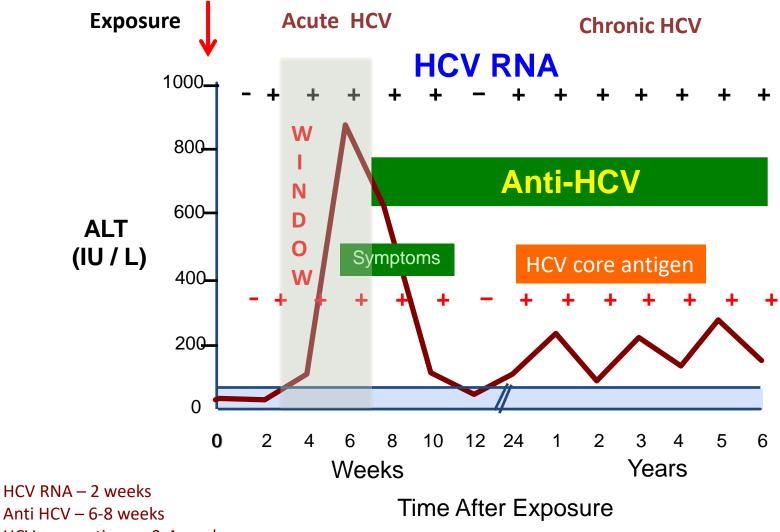
- HCC recurrence after DAA therapy

Outline

- Natural course of HCV infection and Diagnosis
- First time treatment
- Retreatment in DAA failures, drug resistance
- Special scenarios

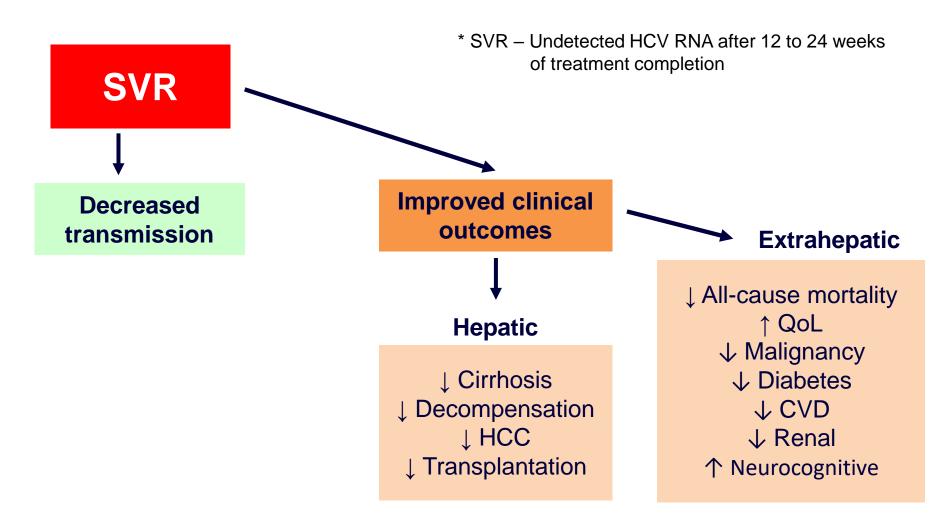

Decompensated cirrhosis HCV + Liver cancer HCV + HBV Acute hepatitis C Pregnancy, children and adolescence

• Post treatment follow up


Natural history of HCV infection

Diagnosis of HCV infection

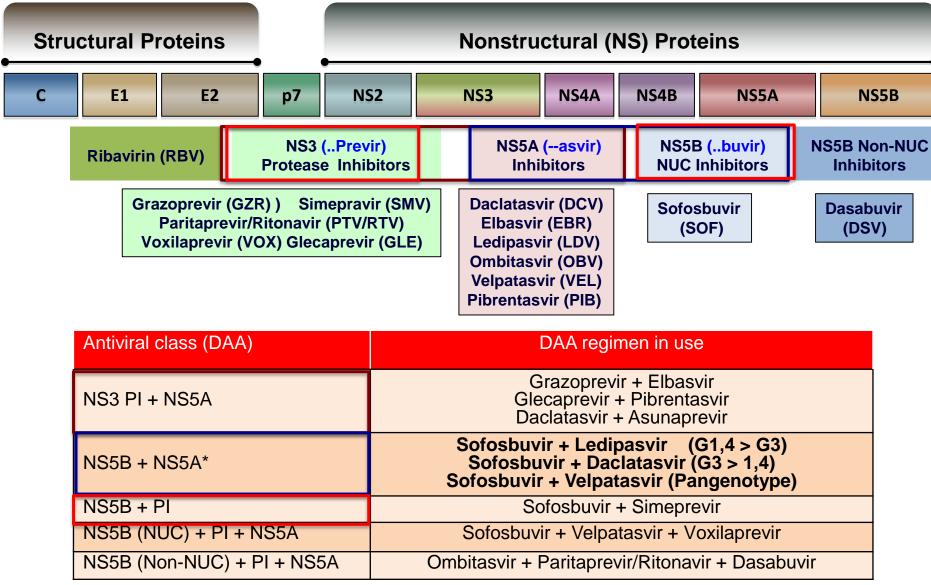
HCV core antigen – 2-4 weeks


Diagnosis of HCV: Requires Both Anti-HCV (Antibody) and HCV-RNA (Viral Load)

Anti-HCV	HCV RNA	Interpretation
Positive	Positive	Chronic or acute HCV infection
Positive	Negative	 Resolution of HCV infection (spontaneous or with treatment)
Negative	Positive	 Early acute HCV infection (prior to antibody development) HCV infection in severely immunocompromised setting (eg, HIV infection, organ transplant, chemotherapy)
Negative	Negative	No HCV infection

Benefits of SVR (HCV cure)

Smith-Palmer J, et al. BMC Infect Dis. 2015;15:19. Negro F, et al. Gastroenterology. 2015;149:1345-1360. George SL, et al. Hepatology. 2009;49:729-738.

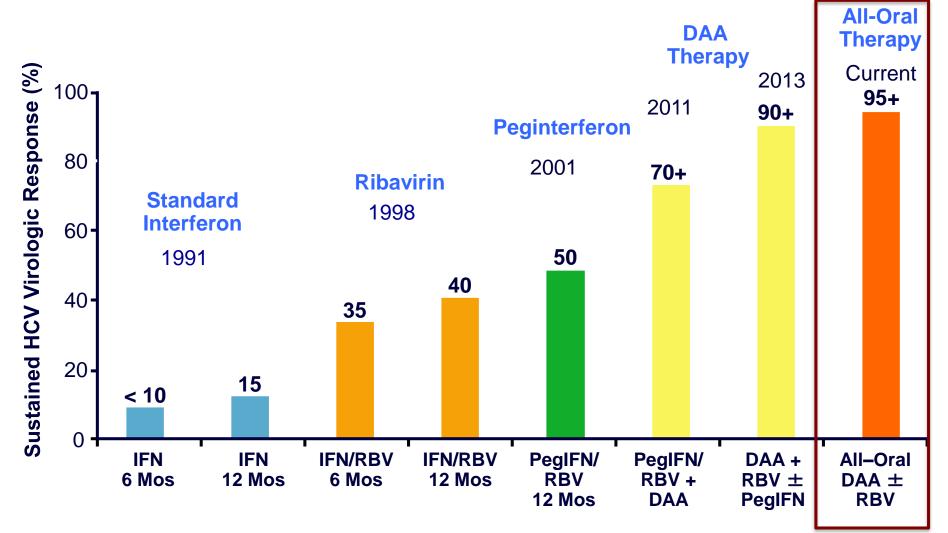

Outline

- Natural course of HCV infection and Diagnosis
- First line treatment
- Retreatment in DAA failures, drug resistance
- Special scenarios

Decompensated cirrhosis HCV + Liver cancer HCV + HBV Acute hepatitis C Pregnancy, children and adolescence

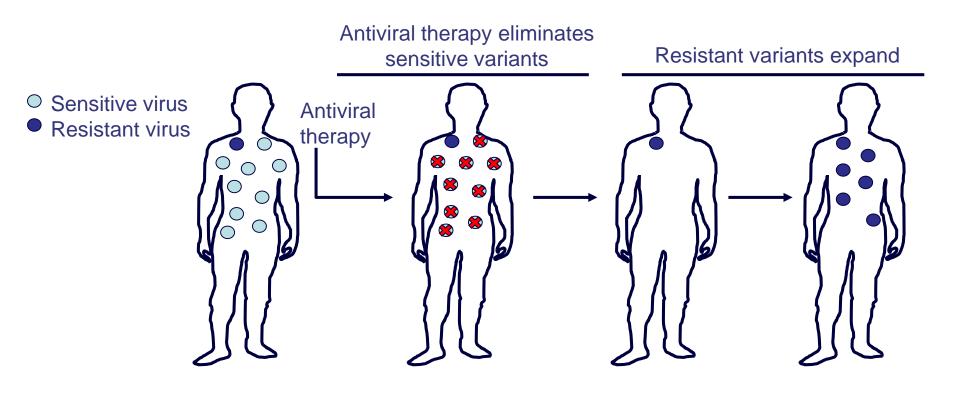
• Post treatment follow up

Directly acting agents (DAA) and targets



* Available in India

Current All-Oral Therapies Highly Effective, Simple, Well Tolerated



Development of HCV viral resistance

HCV RNA replicates at ~10¹² virions/day By chance, replication errors produce baseline RASs RASs may also be selected for with treatment failure Virological breakthrough (Rare) Relapse (Most common cause of DAA failure)

RAS with Potential Clinical Significance

Wild-type Amino Acid (Sensitive)	Position	Variant Amino Acid
Μ	28	A/G/T
Q	30	D/E/H/G/K/L/R
L	31	F/M/V
Y	93	C/H/N/S

Example= Y93H = Y (Tyrosine) 93H (Histidine)

- NS5A RASs appear to have impact on treatment response with regimens that include an NS5A inhibitor; impact occurs primarily with GT1a and GT3
- New generation of DAAs less impacted by NS5A RASs but modification of treatment regimen is required in some circumstances

Current management of hepatitis C

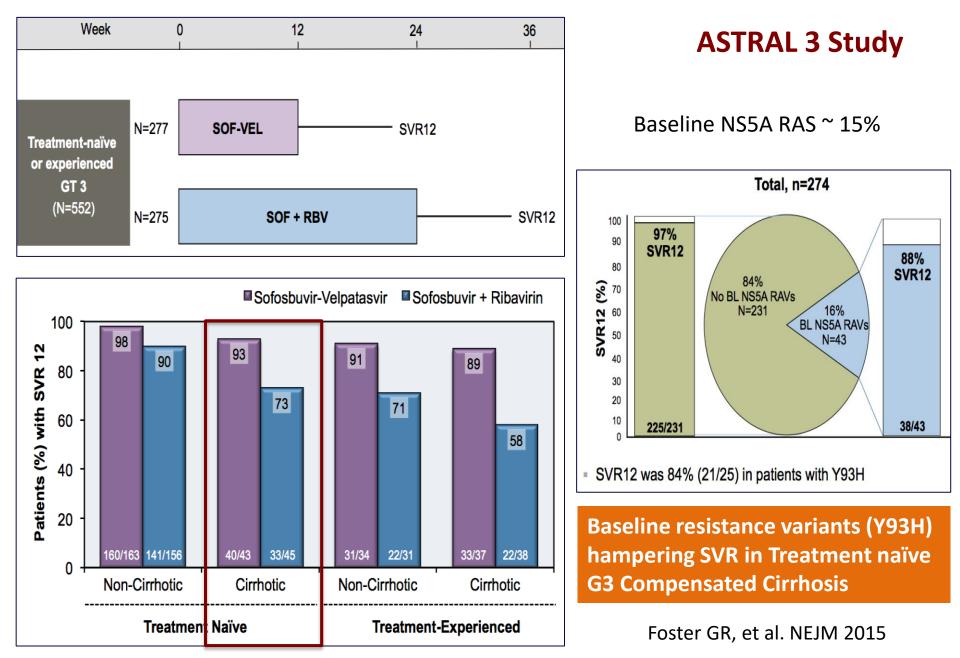
- Natural course of HCV infection and Diagnosis
- HCV life cycle, Antiviral drugs and targets
- First time treatment
- Retreatment in DAA failures, drug resistance
- Special scenarios

Decompensated cirrhosis HCV + Liver cancer HCV + HBV Acute hepatitis C Pregnancy, children and adolescence

• Post treatment follow up

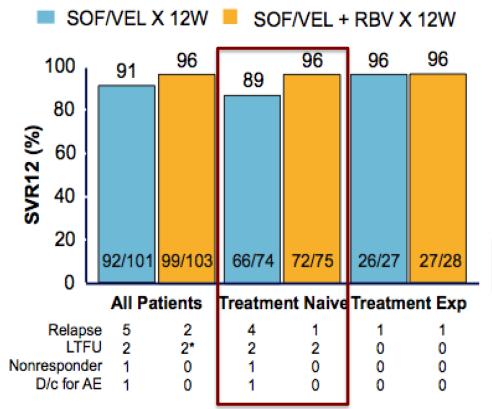
Factors That Influence HCV Treatment Decisions

Category	Factors		
Viral	HCV GTViral load		
Treatment	 HCV treatment history PegIFN + RBV Protease inhibitor Sofosbuvir, NS5A 	RBV eligibilityResistance	
Fibrosis stage	 Cirrhosis? Liver biopsy (for mixed etiologies, Fibroscan > 12.5, NPV >90%, to Plt count, APRI (AST, Plt) <1, Fib- If cirrhotic, any history of decompetent Transplant evaluation if necessary 	r/o cirrhosis 4 (+ age) <1.9, high NPV ensation?	
Co-infection/ comorbidities	 HIV confection Cardiovascular, renal, metabolic, etc, concerns Drug–drug interactions 		
Financial	 Cost issues, insurance 		
	AASLD/IDSA. HCV Guidelines. April 2017. EA	SL, et al. J Hepatol. 2015;63:237-264.	


		tion, Wks	SVR >95%	
GT	Regimen	No Cirrhosis	Compensated Cirrhosis	Clinical Trial
1	Glecaprevir / Pibrentasvir Elbasvir / Paritaprevir Sofosbuvir / Ledipasvir Sofosbuvir / Velpatasvir	8 12 (G1b) 8 or 12 [†] 12	12 12 (G1b) 12 12	ENDURANCE 1, EXP 1 C-EDGE (TN) ION 1, 3 ASTRAL 1
3	Glecaprevir / Pibrentasvir Sofosbuvir / Velpatasvir	8 12	12 No BL RAS)	SURVEYOR 1;2 ASTRAL 3
4	Glecaprevir / Pibrentasvir Elbasvir / Paritaprevir Sofosbuvir / Ledipasvir Sofosbuvir / Velpatasvir	8 12 12 12	12 12 12 12 12	ENDURANCE 4, EXP 1 ASTRAL 1 C-EDGE (TN) ION 4

⁺If nonblack, no HIV, and HCV RNA < 6 million IU/mL, 8-wk duration recommended.

High Efficacy, No need for Genotype testing in Treatment naïve non-cirrhotics


Modified from AASLD/IDSA. HCV guidelines 2018 (updated), EASL HCV guidelines 2018

^{bs} No need for Baseline RAS testing, add RBV Sofosbuvir/Velpatasvir +/- RBV for GT3 HCV with Cirrhosis

Patients with GT3 HCV infection and compensated cirrhosis*, prior SOF

RAS Analysis, n/N (%)	SOF/VEL	SOF/VEL + RBV
Detection of BL RAS		
 No 	79/98 (81)	79/101 (78)
 Yes 	19/98 (19)	22/101 (22)
SVR12		
No BL RAS	76/79 (96)	78/79 (99)
 BL RAS 	16/19 (84)	21/22 (96)
 BL Y93H 	2/4 (50)	8/9 (89)

Adding Ribavirin to SOF/VEL in treatment naïve GT3 compensated cirrhosis improve SVR and compensates for testing baseline RAS

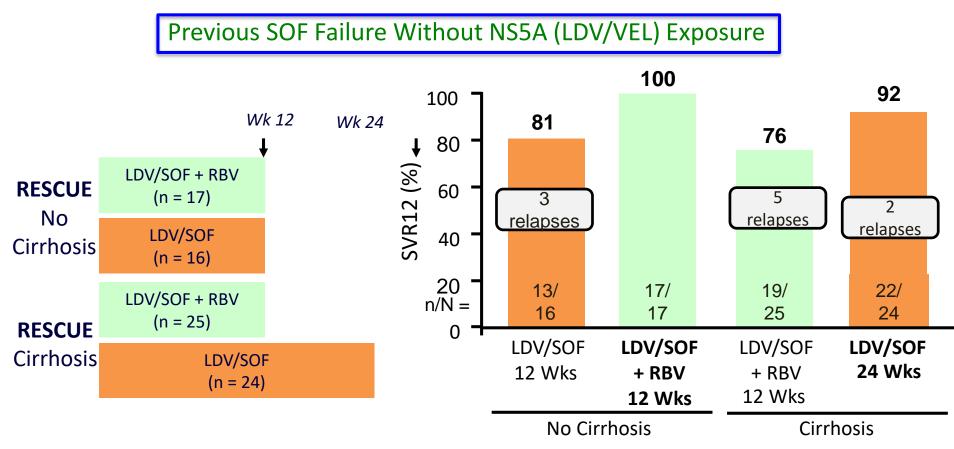
Buti M et al. EASL 2018

Regimens for Treatment Experienced Patients (Regimens with SVR >90%)

GT	Prior PegIFN/r or SOF/r or PegIFN/SOF/r based regimens
1a	Sofosbuvir/Velpatasvir (SOF/VEL) x 12 w Glecaprevir/Pibrentasvir x 8 w (No cirrhosis) Glecaprevir/Pibrentasvir x 12 w (cirrhosis) Elbasvir/Grazoprevir x 12 w (HCV RNA < 8L)
1b	Sofosbuvir/Velpatasvir (SOF/VEL) x 12 w Glecaprevir/Pibrentasvir x 8 w (No cirrhosis) Glecaprevir/Pibrentasvir x 12 w (cirrhosis) Sofosbuvir/Ledipasvir x 12 w Elbasvir/Grazoprevir x 12 w (HCV RNA < 8L)
3	Sofosbuvir/Velpatasvir x 12 w (No cirrhosis) Glecaprevir/Pibrentasvir x 12 w (No cirrhosis) Glecaprevir/Pibrentasvir x 16 w (cirrhosis) Sofosbuvir/Velpatasvir /Voxilaprevir x 12 w (only cirrhosis)

All G1 TE on NS5a (LDV/DCV) have suboptimal outcomes All Genotype 3 treatment experienced cirrhotics patients have suboptimal response

Modified from AASLD/IDSA. HCV guidance 2018 (updated) EASL HCV guidelines 2018



Regimens for Treatment Experienced Patients (Regimens with SVR >90%)

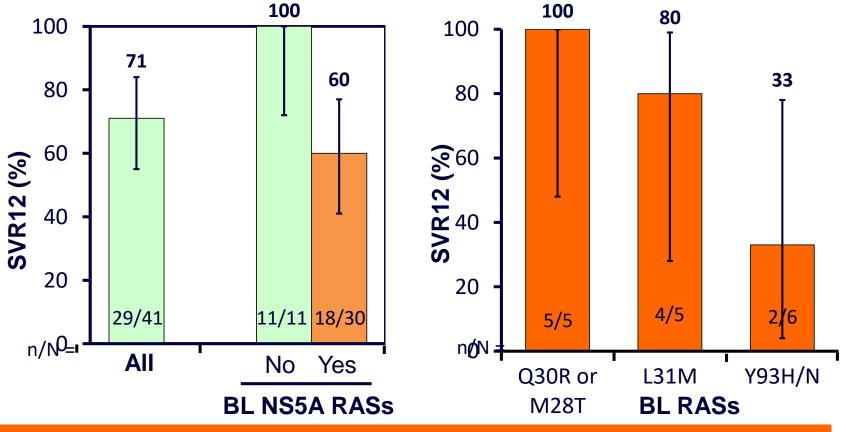
GT	Prior PegIFN/r or SOF/r or PegIFN/SOF/r based regimens	Prior NS5a (DCV/LDV/VEL relapse) regimens				
1a	Sofosbuvir/Velpatasvir (SOF/VEL) x 12 w Glecaprevir/Pibrentasvir x 8 w (No cirrhosis) Glecaprevir/Pibrentasvir x 12 w (cirrhosis) Elbasvir/Grazoprevir x 12 w (HCV RNA < 8L)	Sofosbuvir/Vel /Voxilaprevir (SOF/VEL/VOX) x 12 w ?? SOF/VEL/R X 24 W SOF/GLE/PIB x 12 w				
1b	Sofosbuvir/Velpatasvir (SOF/VEL) x 12 w Glecaprevir/Pibrentasvir x 8 w (No cirrhosis) Glecaprevir/Pibrentasvir x 12 w (cirrhosis) Sofosbuvir/Ledipasvir x 12 w Elbasvir/Grazoprevir x 12 w (HCV RNA < 8L)	Sofosbuvir/Velpatasvir /Voxilaprevir (SOF/VEL/VOX) x 12 w SOF/GLE/PIB x 12 w				
3	Sofosbuvir/Velpatasvir x 12 w (No cirrhosis) Glecaprevir/Pibrentasvir x 12 w (No cirrhosis) Glecaprevir/Pibrentasvir x 16 w (cirrhosis) Sofosbuvir/Velpatasvir /Voxilaprevir x 12 w (only cirrhosis)	SOF/VEL/VOX ± RBV x 12 w				
	All G1 TE on NS5a (LDV/DCV) have suboptimal outcomes All Genotype 3 treatment experienced cirrhotics patients have suboptimal response					

Modified from AASLD/IDSA. HCV guidance 2018 (updated) EASL HCV guidelines 2018

G1 Treatment experienced cirrhotic No option for VEL → Add RBV or 24 w SOF + LDV

37% (30/82) with previous SMV + SOF failure

Adding ribavirin or increasing treatment duration to SOF + LDV improve SVR in TE (prior SOF/r or P/R) G1 patients


Tam E, et al. EASL 2017

Failure of SOF + LDV in GT1 Never reuse failed regimen

 8-wk or 12-wk LDV/SOF-based treatment failures retreated with LDV/SOF for 24 wks (N = 41)

Repeating same failed regimen with extended duration does not improve SVR

Lawitz E, et al. EASL 2015, Hepatology 2016.

Failure of SOF + LDV in GT1 May treat with SOF + VEL + R x 24 weeks

Wk 24

SOF/VEL

400/100 mg +

RBV

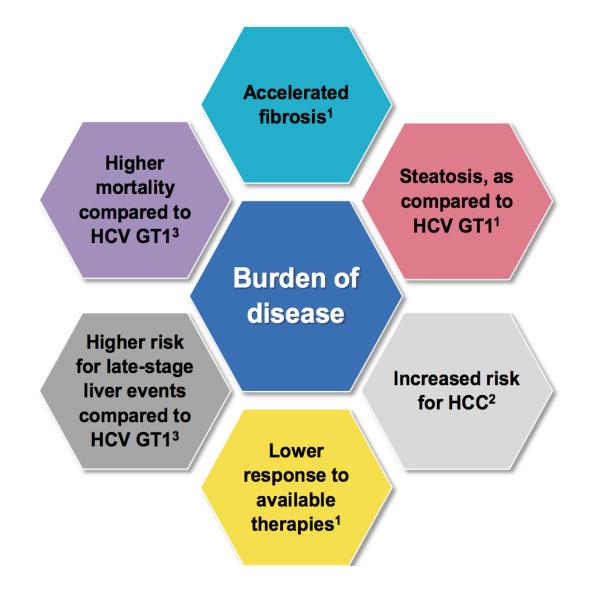
(N - 69)

• Single-arm trial

HCV-infected pts without SVR in previous phase II trials of SOF/VEL (n = 41)→ or SOF/VEL + VOX (n = 28)

- Cirrhosis: 26%; previous relapse: 99%
- 20% GT2
- Only 18% of GT1 with NS5A RASs
- Overall SVR12: GT1 : 97%; GT2: 91%; GT3 : 76%

 9/11 (82%) pts with GT3 HCV and Y93H achieved SVR12

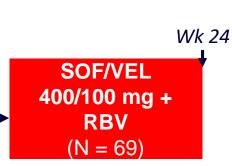

Adding RBV to 24 w of SOF + VEL improves SVR in GT1 but remain suboptimal In GT3

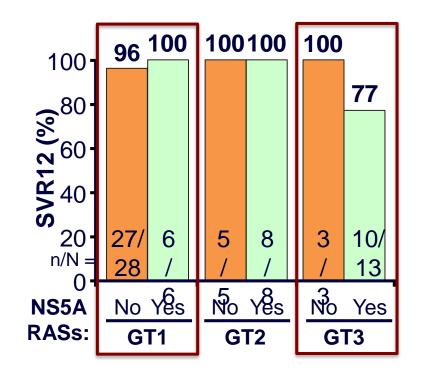
Gane EJ, et al. EASL 2016.

HCV GT3 has a Unique Pathophysiology Compared to Other Genotypes

Difficult to treat HCV GT3 Treatment experienced and cirrhosis

DAA Regimen	Clinical Trial	Prior Treatment	All cirrhosis	Treatment experienced	Treatment experienced cirrhosis
<u>SOF + R</u>					
SOF + R X 12 W	FUSION	Peg-IFN/r	31		19
SOF + R X 16 W	FUSION	Peg-IFN/r	66		61
SOF + R X 24 W	VALENCE	Peg-IFN/r		79	62
<u>SOF + DCV</u> SOF + DCV X 12 W	ALLY 3 UK-EAP French cohort	Peg-IFN/r, SOF	63	86	58
SOF + DCV + R X 12 W	ALLY 3+	Peg-IFN/r, SOF	83		88
SOF + DCV + R X 16 W	ALLY 3+	Peg-IFN/r, SOF	89		86
Any SOF/DCV + NS5A RAV	Nelson et al. Hepatology 2016	Peg-IFN/r, SOF	67		25
<u>SOF + VEL</u> SOF + VEL X 12 W	ASTRAL-3	Peg-IFN/r, SOF	91	90	89


No study of SOF + VEL +/- R X 12-24 Week in TE (P/R or SOF/r) compensated cirrhotic


SOF + VEL failure in G3 cirrhotic (CTP A) Test for NS5A RAS, if + \rightarrow wait for new regimen If - \rightarrow SOF + VEL + R X 24 weeks

• Single-arm trial

HCV-infected pts without SVR in previous phase II trials of SOF/VEL (n = 41)→ or SOF/VEL + VOX (n = 28)

- Cirrhosis: 26%; previous relapse: 99%
- 20% GT2
- Only 18% of GT1 with NS5A RASs
- Overall SVR12: GT1 : 97%; GT2: 91%; GT3 : 76%

 9/11 (82%) pts with GT3 HCV and Y93H achieved SVR12

Adding RBV to 24 w of SOF + VEL improves SVR in GT1 but remain suboptimal In GT3

Gane EJ, et al. EASL 2016.

Current management of hepatitis C

- Natural course of HCV infection and Diagnosis
- HCV life cycle, Antiviral drugs and targets
- First line treatment
- Retreatment in DAA failures, drug resistance
- Special scenarios

Decompensated cirrhosis

HCV + Liver cancer

HCV + HBV

Acute hepatitis C

Pregnancy, children and adolescence

• Post treatment follow up

Decompensated HCV cirrhosis To Treat or Not to Treat

Potential benefits with SVR

- Improved clinical outcomes (decompensation, HCC), QOL
- Delisting, better wait list survival, no re-infection of graft

Cons

- DAA toxicity (NS3 PI contraindicated) or further decompensation
- If treatment fails; selection of resistance may impair future therapy
- MELD purgatory
- Lose access to HCV+ livers

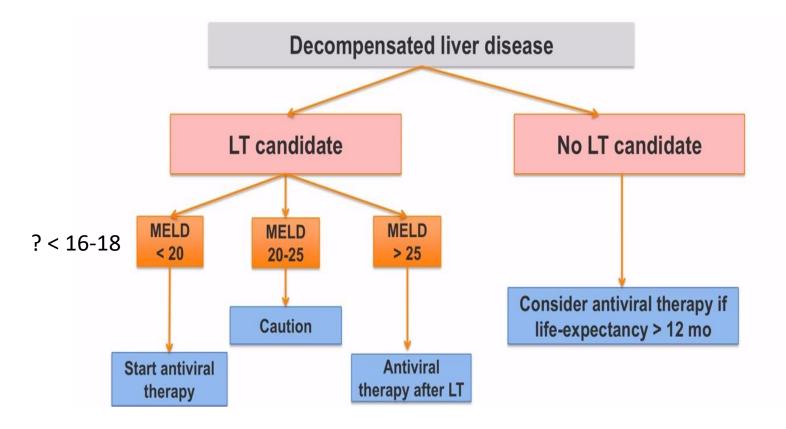
Decompensated HCV cirrhosis Pre-LT treatment : Questions ?

- Regimens ?? Role of RBV
- Futility vs benefit ?
- Delisting ? How long?
- Obstacles ? HCC, HBV Reactivation

Treatment Regimens in HCV decompensated cirrhosis

Trial	GT	MELD	DAA	Duration	SVR	SAE
CP-B cir	rhosis tre	eated with SOF/VE	or 24w	CTP B:94%	Overall 17%	
						CTP C: 56%
SOF/VE	_x 12w	SOF/VEL + RBV x 12		24w	CTP B:87%	CTP B: 10%
100_	83	94 86	85 50 50		CTP C:86%	CTP C: 26%
80_ 80_			Т	-	CTP B:89%	CTP B: 34%
0 60 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0					CTP C:87%	CTP C: 42%
_o	75/ 90	82/ 77/ 87 90	$\frac{7}{14}$ $\frac{11}{13}$ $\frac{6}{12}$		CTP B:87%	Overall 22%
Provide the second second		Overall	GT3	_		CTP C: 4%
Breakthrough, n Relapse, n	11	1 1 2 7	6 1 4	-	CTP B:96%	
LTFU, n Death, n	1 3	- 3 2 2	1 - 1	-	CTP C:78%	
ASTRAL-4	Any	Overall median 10	SOF/VEL	12 weeks	83%	19%
				24 weeks	86%	18%
			SOF/VEL+RBV	12 weeks	94%	16%

Lower SVR due to treatment discontinuations + true relapse CTP B > C SAE – Bradyarrythmias, Worsened Renal functions, HBV reactivation, SOF related hepatotoxicity


Liver disease severity post DAA in Decompensated Patients

	N	Overall SVR	Improved	Unchanged	Worsened
SOF + LDV + RBV (SOLAR-1)	94	87%	67%	16%	17%
SOF + LDV + RBV (SOLAR-2)	136	83%	71%	13%	16%
SOF + DCV + RBV (ALLY-1)	56	83%	45%	21%	34%
SOF + NS5A + RBV (UK EAP)	220	75%	61%	15%	24%
SOF + VEL +/- RBV (ASTRAL-4)	250	88%	54%	21%	25%
Total	801	83.5%	480 (60%)	140 (17%)	181 (23%)

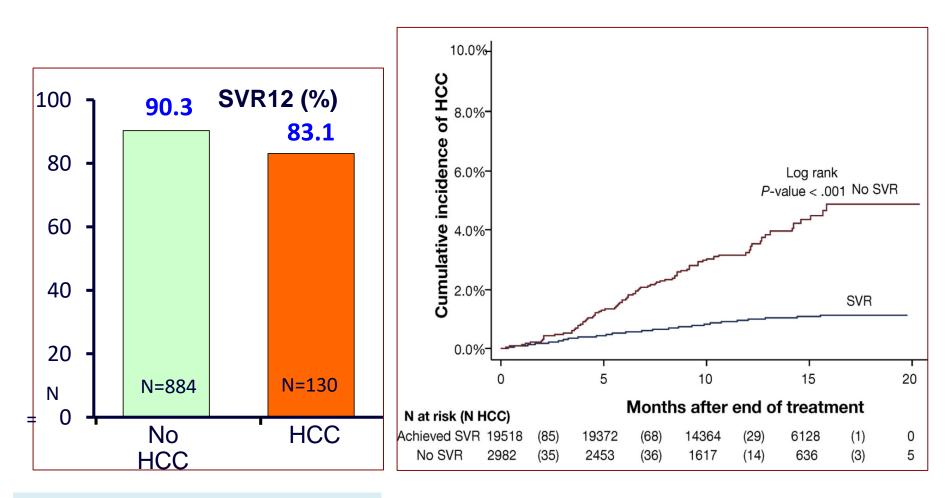
~ 24% delisted (CTP B/C → CTP A, MELD < 15)
 Predictors of delisting – Baseline MELD (<16), delta MELD and delta albumin
 Time to delisting = minimum of 24 w after treatment start
 MELD >20, Unlikely to delist → Focus on LT

Suggested approach and treatment regimen in Decompensated cirrhosis

	SOF + LDV	SOF + DCV	SOF + VEL
RBV eligible	12 weeks + low-dose RBV	12 weeks + low-dose RBV	12 Week + RBV (Weight based for CTP-B; Low dose CTP-C), ? 24w
RBV ineligible	24 Weeks	24 Weeks	24 Weeks

Outline

- Natural course of HCV infection and Diagnosis
- HCV life cycle, Antiviral drugs and targets
- First line treatment
- Retreatment in DAA failures, drug resistance
- Special scenarios


Decompensated cirrhosis
HCV + Liver cancer
HCV + HBV
Acute hepatitis C
Pregnancy, children and adolescence

• Post treatment follow up

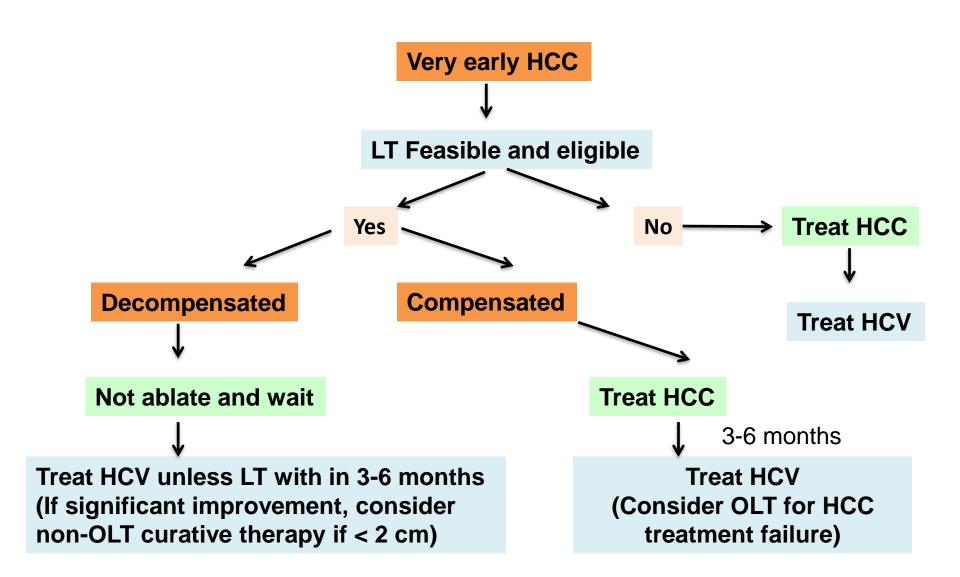
DAA antiviral therapy and HCC

SVR lower in HCC cirrhotic patients treated with DAA

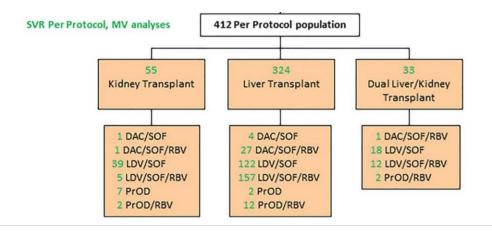
Radhakrishnan K et al. AASLD 2017

DAA therapy and de-novo HCC

Kanwall et al. Gastroenterology 2017


Systematic review with meta-analysis: recurrence of hepatocellular carcinoma following direct-acting antiviral therapy

- 24 studies (n = 1820 patients)
- Proportion of patients with pooled HCC recurrence following DAA therapy was 21.9%
- Factors associated with recurrence
 - History of prior HCC recurrence
 - Shorter interval between HCC complete response and DAA initiation
- DAA-treated and interferon-treated or untreated patients similar recurrence
- Limitations- heterogeneous cohorts, ascertainment bias for recurrence, and short durations of follow-up.
- Acceptable HCC recurrence rates after DAA therapy, particularly if DAA therapy is delayed at least 6 months after HCC complete response.

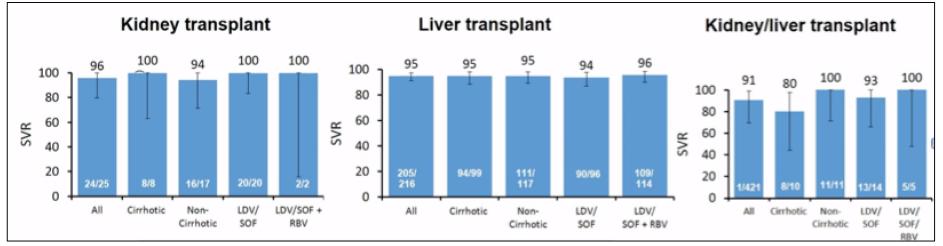


Timing of HCV therapy in very early HCC

Safety and Efficacy of Current Direct-Acting Antiviral Regimens in Kidney and Liver Transplant Recipients With Hepatitis C: Results From the HCV-TARGET Study

Varun Saxena,^{1*} Vandana Khungar,^{2*} Elizabeth C. Verna,³ Josh Levitsky,⁴ Robert S. Brown Jr,⁵ Mohamed A. Hassan,⁶ Mark S. Sulkowski,⁷ Jacqueline G. O'Leary,⁸ Farrukh Koraishy,⁹ Joseph S. Galati,¹⁰ Alexander A. Kuo,¹¹ Monika Vainorius,¹² Lucy Akushevich,¹² David R. Nelson,¹³ Michael W. Fried,¹² Norah Terrault,^{1*} and K. Rajender Reddy, MD^{2**}

HCV treatment post Transplant


No major challenges with current DAA

Velpatasvir efficacy and safety not studied in LT recipients

Renal insufficiency may restrict use of sofosbuvir

Ribavirin use may be restricted due to anemia

HCV+ Donor- Mixed GT, RAS

Saxena V et al. Hepatology 2017

HCV and Renal disease Phenotypes and treatment approach

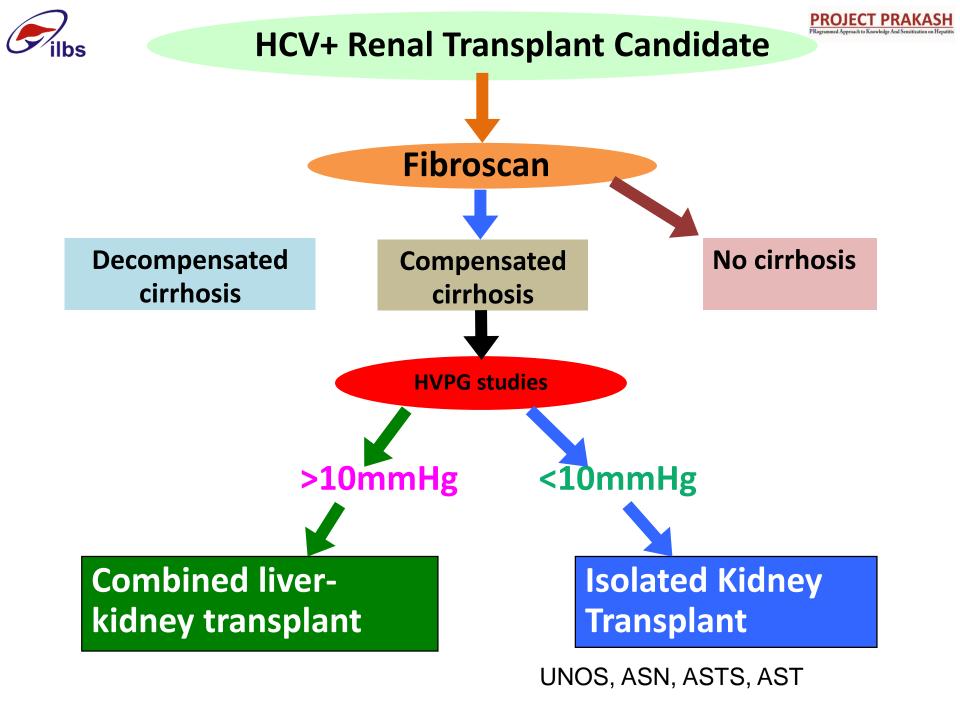
Туре	Line of therapy
CKD Stage 4,5 +/- hemodialysis	 SOF free DAA AASLD/IDSA recommendations GT1-6: GLE/PIB No cirrhosis: 8 wks Compensated cirrhosis: 12 wks GT1 or GT4: EBR/GZR 12 wks
Post Renal transplant	SOF + NS5A X 12 W ; SVR >95%
Cirrhosis with renal failure (HRS, AKI, ACLF)	Albumin, vasopressors, LT \rightarrow DAA On stabilization
Post LT with CNI toxicity	Alternate Ix, reduce dose
Mixed essential cryoglobulinemia	DAA + Plasmapheresis / Immunosuppression (Rituximab)

HCV treatment in CKD Indian studies – SOF + NS5a

- 65 CKD Stage 4/5
- 32% Cirrhosis
- Sofosbuvir [200 mg (half tablet of 400 mg)] plus full-dose Daclatasvir (60 mg) given daily for either 12 or 24 weeks given in patients with genotype 3 cirrhosis.

RESULTS:

- ETR- 98.5%
- SVR 12-100%
- No serious adverse events.

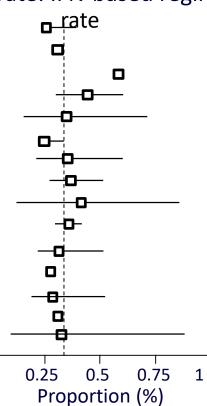

- 71 CKD (84.5% on MHD)
- 23.9% Cirrhosis
- Full-dose sofosbuvir was used in combination with
 - Ribavirin (n = 26, for 24 weeks, 69.2% genotype 1, 30.8% genotype 3),
 - Ledipasvir (n = 26, for 12 weeks, geno- 1)
 - Daclatasvir (n = 19, for 12 weeks, geno- 3).

RESULTS

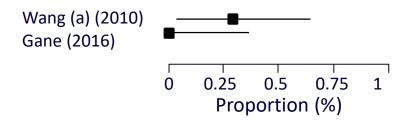
- SVR 12 in 100%
- Relapse
 - 1- S+L, at 24 weeks
 - 1-S+R at 48 week

Taneja S et.al. Dig Dis May 2018

Sharma M et.al Liv Int April 2018



PROJECT PRAKASH with antiviral agents: A systematic review and meta-analysis.


IFN-based regimens (n=1,037) vs. DAAs (n=148)

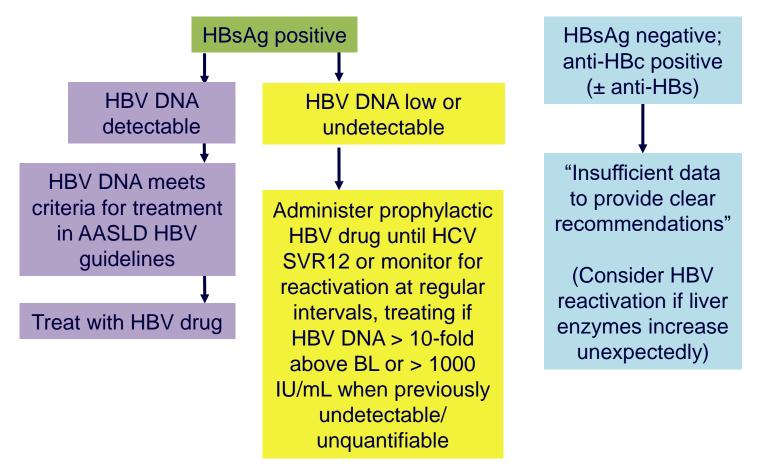
Reactivation rate: IFN-based regimens

Villa (2001) Yalcin (2002) Liu (2003) Chung (2005) Saitta (2006) Senturk (2008) Potthoff (2008) Yu (2009) Erol (2009) Liu (2009) Vigano (2009) Hung (2011) Kim (2011) Yeh (2015) Yeh (2016) 0

Reactivation rate: DAAs

HBVr occurred earlier in DAA (4-12 weeks) versus IFN (at end of therapy or later)

- HBVr did not affect HCV SVR
- HBV DNA not associated with higher HBVr


pooled incidence rate of HBV reactivation was significantly higher for DAAs (12.2%) vs. IFN

Chen G et al. Hepatology 2017

Files HBV Testing/Monitoring During HCV DAA Therapy Risk of HBV reactivation

- Test all pts. initiating HCV therapy for HBsAg, anti-HBc, and anti-HBs
 - Vaccinate if no HBV markers; follow flow chart below if HBV markers present

HCV treatment in Children and adolescence

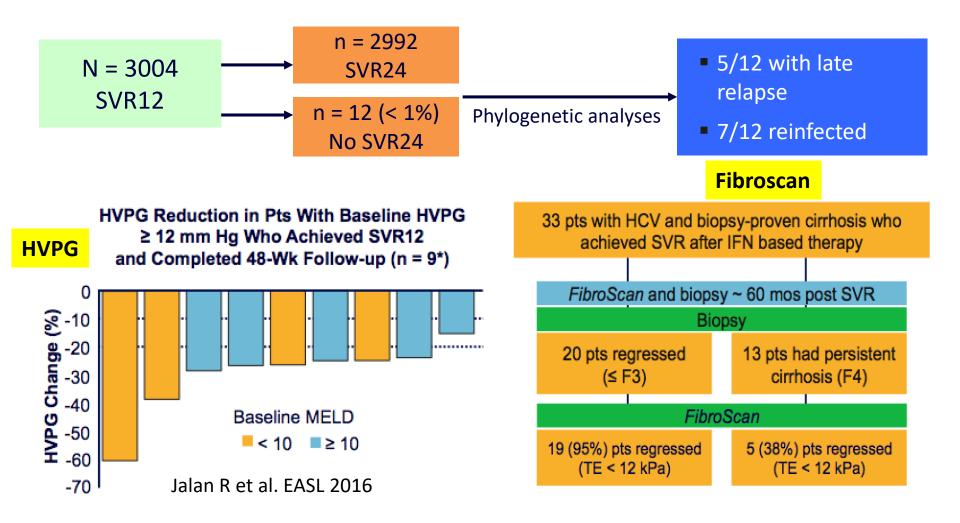
- Mother to Child transmission- Uncommon, except HCV-HIV coinfection
- Maternal HCV therapy IFN C/I, DAA not approved, small study from Kashmir
- Test anti HCV at 18 m, HCV RNA earlier if apprehensive
- IFN safe beyond 2-3 years, SVR suboptimal and require RBV (unsafe esp. in Thallesemics)
- Defer, Current trials on SOF + LDV, SOF + RBV at 12-17 years age
- Wait for ongoing trials of DAA use at Age 3-12 years

Outline

- Natural course of HCV infection and Diagnosis
- HCV life cycle, Antiviral drugs and targets
- First line treatment
- Retreatment in DAA failures, drug resistance
- Special scenarios

Decompensated cirrhosis HCV + Liver cancer HCV + HBV Acute hepatitis C Pregnancy, children and adolescence

Post treatment follow up



HCV RNA

Post SVR follow up

Risk of late relapse very low, but can happen

Conclusion

- DAA for HCV infection a major breakthrough
- Stage of liver disease more important than SVR
- No Peg-IFN, LDV or DCV
- Use SOF + VEL = Easy to treat pts. 12 w
- Difficult patients –

Optimize response – Add RBV, Extended treatment NS5A failure – Individualize, Wait for new DAA vs retreatment Decompensated cirrhosis – SOF + VEL + R X 12/24 wks Transplant candidates (LDLT) – Treat post transplant Monitor- HBV reactivation, de-novo HCC, recurrence

Thank you!